Periapical lesions in two inbred strains of rats differing in immunological reactivity

Author(s):  
S. Zivanovic ◽  
M. Papic ◽  
T. Vucicevic ◽  
M. Kovacevic Miletic ◽  
N. Jovicic ◽  
...  
2020 ◽  
Author(s):  
J. Gierten ◽  
T. Fitzgerald ◽  
F. Loosli ◽  
M. Gorenflo ◽  
E. Birney ◽  
...  

1972 ◽  
Vol 33 (2) ◽  
pp. 494-503 ◽  
Author(s):  
Setsuo Komura ◽  
Masao Ueda ◽  
Toshikiyo Kobayashi

1969 ◽  
Vol 62 (1_Suppl) ◽  
pp. S134-S144 ◽  
Author(s):  
W. M. Hunter

ABSTRACT The preparation of radioiodinated human LH and human FSH with specific activities of 50—150 μc/μg for use in specific radioimmunoassay systems is described. Methods for minimising iodination damage, for removing severely damaged fractions after iodination and for assessing the immunological reactivity of the final products are detailed. The obligation upon immunoassayists to demonstrate that their labelled preparations do indeed represent the hormones under consideration is discussed and criteria which may contribute evidence on this question are put forward.


1965 ◽  
Vol 99 (909) ◽  
pp. 495-510 ◽  
Author(s):  
Bruce Wallace ◽  
Carol Madden

1988 ◽  
Vol 28 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Adele Tutte ◽  
Roy Riblet

Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 297-306 ◽  
Author(s):  
Kara E Koehler ◽  
Jonathan P Cherry ◽  
Audrey Lynn ◽  
Patricia A Hunt ◽  
Terry J Hassold

AbstractGenetic background effects on the frequency of meiotic recombination have long been suspected in mice but never demonstrated in a systematic manner, especially in inbred strains. We used a recently described immunostaining technique to assess meiotic exchange patterns in male mice. We found that among four different inbred strains—CAST/Ei, A/J, C57BL/6, and SPRET/Ei—the mean number of meiotic exchanges per cell and, thus, the recombination rates in these genetic backgrounds were significantly different. These frequencies ranged from a low of 21.5 exchanges in CAST/Ei to a high of 24.9 in SPRET/Ei. We also found that, as expected, these crossover events were nonrandomly distributed and displayed positive interference. However, we found no evidence for significant differences in the patterns of crossover positioning between strains with different exchange frequencies. From our observations of >10,000 autosomal synaptonemal complexes, we conclude that achiasmate bivalents arise in the male mouse at a frequency of 0.1%. Thus, special mechanisms that segregate achiasmate chromosomes are unlikely to be an important component of mammalian male meiosis.


Genetics ◽  
1982 ◽  
Vol 102 (3) ◽  
pp. 539-556
Author(s):  
Don C Morizot ◽  
Michael J Siciliano

ABSTRACT The products of 49 protein-coding loci were examined by starch gel electrophoresis for populational variation in six species of Xiphophorus fishes and/or segregation in intra- and interspecific backcross and intercross hybrids. Electrophoretic variation was observed for 29 of the 35 locus products in a survey of 42 population samples. The highest frequency of polymorphic loci observed in noninbred populations was 0.143. After ten or more generations of inbreeding, all loci studied were monomorphic. Inbred strains generally exhibited the commonest electrophoretic alleles of the population from which they were derived. An assessment of genetic distances among Xiphophorus populations reflected classical systematic relationships and suggested incipient subspeciation between X. maculatus from different drainages as well as several species groups. Thirty-three loci were analyzed with respect to segregation in hybrids. The goodness of fit of segregations to Mendelian expectations at all loci analyzed (except loci in linkage group I) is interpreted as evidence for high genetic compatibility of the genomes of Xiphophorus species. It is anticipated that these data will result in a rapid expansion of the assignment of protein-coding loci to linkage groups in these lower vertebrate species.


Genetics ◽  
1984 ◽  
Vol 108 (3) ◽  
pp. 651-667
Author(s):  
Douglas P Dickinson ◽  
Kenneth W Gross ◽  
Nina Piccini ◽  
Carol M Wilson

ABSTRACT Inbred strains of mice carry Ren-1, a gene encoding the thermostable Renin-1 isozyme. Ren-1 is expressed at relatively low levels in mouse submandibular gland and kidney. Some strains also carry Ren-2, a gene encoding the thermolabile Renin-2 isozyme. Ren-2 is expressed at high levels in the mouse submandibular gland and at very low levels, if at all, in the kidney. Ren-1 and Ren-2 are closely linked on mouse chromosome 1, show extensive homology in coding and noncoding regions and provide a model for studying the regulation of gene expression. An investigation of renin genes and enzymatic activity in wild-derived mice identified several restriction site polymorphisms as well as putative variants in renin gene expression and protein structure. The number of renin genes carried by different subpopulations of wild-derived mice is consistent with the occurrence of a gene duplication event prior to the divergence of M. spretus (2.75-5.5 million yr ago). This conclusion is in agreement with a prior estimate based upon comparative sequence analysis of Ren-1 and Ren-2 from inbred laboratory mice.


Sign in / Sign up

Export Citation Format

Share Document