Effect of Pasteurization on Membrane Proteins and Oxidative Stability of Oil Bodies in Various Crops

Author(s):  
Wu Lichun ◽  
Yufan Sun ◽  
Mengxue Kang ◽  
Mingming Zhong ◽  
Baokun Qi ◽  
...  
2008 ◽  
Vol 110 (10) ◽  
pp. 962-968 ◽  
Author(s):  
Ian D. Fisk ◽  
Daniel A. White ◽  
Mitaben Lad ◽  
David A. Gray

2018 ◽  
Vol 9 (12) ◽  
pp. 6146-6154 ◽  
Author(s):  
Jian Ding ◽  
Zejian Xu ◽  
Baokun Qi ◽  
Lianzhou Jiang ◽  
Xiaonan Sui

Oleosomes, which are pre-emulsified oil bodies found naturally in plants, have excellent stability, therefore making their use more popular in the food industries.


2018 ◽  
Vol 95 (4) ◽  
pp. 485-495 ◽  
Author(s):  
Farah Zaaboul ◽  
Husnain Raza ◽  
Abderrahim Lazraq ◽  
Boxin Deng ◽  
Chen Cao ◽  
...  

2010 ◽  
Vol 112 (7) ◽  
pp. 741-749 ◽  
Author(s):  
David A. Gray ◽  
Gareth Payne ◽  
David Julian McClements ◽  
Eric A. Decker ◽  
Mita Lad

LWT ◽  
2019 ◽  
Vol 113 ◽  
pp. 108263 ◽  
Author(s):  
Juncai Hou ◽  
Xue Feng ◽  
Mengting Jiang ◽  
Qiuling Wang ◽  
Chunli Cui ◽  
...  

2012 ◽  
Vol 132 (3) ◽  
pp. 1514-1520 ◽  
Author(s):  
Bingcan Chen ◽  
David Julian McClements ◽  
David A. Gray ◽  
Eric A. Decker

Author(s):  
L. M. Marshall

A human erythroleukemic cell line, metabolically blocked in a late stage of erythropoiesis, becomes capable of differentiation along the normal pathway when grown in the presence of hemin. This process is characterized by hemoglobin synthesis followed by rearrangement of the plasma membrane proteins and culminates in asymmetrical cytokinesis in the absence of nuclear division. A reticulocyte-like cell buds from the nucleus-containing parent cell after erythrocyte specific membrane proteins have been sequestered into its membrane. In this process the parent cell faces two obstacles. First, to organize its erythrocyte specific proteins at one pole of the cell for inclusion in the reticulocyte; second, to reduce or abolish membrane protein turnover since hemoglobin is virtually the only protein being synthesized at this stage. A means of achieving redistribution and cessation of turnover could involve movement of membrane proteins by a directional lipid flow. Generation of a lipid flow towards one pole and accumulation of erythrocyte-specific membrane proteins could be achieved by clathrin coated pits which are implicated in membrane endocytosis, intracellular transport and turnover. In non-differentiating cells, membrane proteins are turned over and are random in surface distribution. If, however, the erythrocyte specific proteins in differentiating cells were excluded from endocytosing coated pits, not only would their turnover cease, but they would also tend to drift towards and collect at the site of endocytosis. This hypothesis requires that different protein species are endocytosed by the coated vesicles in non-differentiating than by differentiating cells.


Author(s):  
D.J. Benefiel ◽  
R.S. Weinstein

Intramembrane particles (IMP or MAP) are components of most biomembranes. They are visualized by freeze-fracture electron microscopy, and they probably represent replicas of integral membrane proteins. The presence of MAP in biomembranes has been extensively investigated but their detailed ultrastructure has been largely ignored. In this study, we have attempted to lay groundwork for a systematic evaluation of MAP ultrastructure. Using mathematical modeling methods, we have simulated the electron optical appearances of idealized globular proteins as they might be expected to appear in replicas under defined conditions. By comparing these images with the apearances of MAPs in replicas, we have attempted to evaluate dimensional and shape distortions that may be introduced by the freeze-fracture technique and further to deduce the actual shapes of integral membrane proteins from their freezefracture images.


Author(s):  
A. Engel ◽  
A. Holzenburg ◽  
K. Stauffer ◽  
J. Rosenbusch ◽  
U. Aebi

Reconstitution of solubilized and purified membrane proteins in the presence of phospholipids into vesicles allows their functions to be studied by simple bulk measurements (e.g. diffusion of differently sized solutes) or by conductance measurements after transformation into planar membranes. On the other hand, reconstitution into regular protein-lipid arrays, usually forming at a specific lipid-to-protein ratio, provides the basis for determining the 3-dimensional structure of membrane proteins employing the tools of electron crystallography.To refine reconstitution conditions for reproducibly inducing formation of large and highly ordered protein-lipid membranes that are suitable for both electron crystallography and patch clamping experiments aimed at their functional characterization, we built a flow-dialysis device that allows precise control of temperature and flow-rate (Fig. 1). The flow rate is generated by a peristaltic pump and can be adjusted from 1 to 500 ml/h. The dialysis buffer is brought to a preselected temperature during its travel through a meandering path before it enters the dialysis reservoir. A Z-80 based computer controls a Peltier element allowing the temperature profile to be programmed as function of time.


Sign in / Sign up

Export Citation Format

Share Document