Changes Occur in Plasma Membrane Turnover when K562 Leukemia Cells are Induced to Differentiate

Author(s):  
L. M. Marshall

A human erythroleukemic cell line, metabolically blocked in a late stage of erythropoiesis, becomes capable of differentiation along the normal pathway when grown in the presence of hemin. This process is characterized by hemoglobin synthesis followed by rearrangement of the plasma membrane proteins and culminates in asymmetrical cytokinesis in the absence of nuclear division. A reticulocyte-like cell buds from the nucleus-containing parent cell after erythrocyte specific membrane proteins have been sequestered into its membrane. In this process the parent cell faces two obstacles. First, to organize its erythrocyte specific proteins at one pole of the cell for inclusion in the reticulocyte; second, to reduce or abolish membrane protein turnover since hemoglobin is virtually the only protein being synthesized at this stage. A means of achieving redistribution and cessation of turnover could involve movement of membrane proteins by a directional lipid flow. Generation of a lipid flow towards one pole and accumulation of erythrocyte-specific membrane proteins could be achieved by clathrin coated pits which are implicated in membrane endocytosis, intracellular transport and turnover. In non-differentiating cells, membrane proteins are turned over and are random in surface distribution. If, however, the erythrocyte specific proteins in differentiating cells were excluded from endocytosing coated pits, not only would their turnover cease, but they would also tend to drift towards and collect at the site of endocytosis. This hypothesis requires that different protein species are endocytosed by the coated vesicles in non-differentiating than by differentiating cells.

1988 ◽  
Vol 36 (9) ◽  
pp. 1081-1089 ◽  
Author(s):  
J Watanabe ◽  
K Kanai ◽  
S Kanamura

To determine whether hepatic sinusoidal cells contain glucagon receptors and, if so, to study the significance of the receptors in the cells, binding of [125I]-glucagon to nonparenchymal cells (mainly endothelial cells and Kupffer cells) isolated from mouse liver was examined by quantitative autoradiography and biochemical methods. Furthermore, the pathway of intracellular transport of colloidal gold-labeled glucagon (AuG) was examined in vivo. Autoradiographic and biochemical results demonstrated many glucagon receptors in both endothelial cells and Kupffer cells, and more receptors being present in endothelial cells than in Kupffer cells. In vivo, endothelial cells internalized AuG particles into coated vesicles via coated pits and transported the particles to endosomes, lysosomes, and abluminal plasma membrane. Therefore, receptor-mediated transcytosis of AuG occurs in endothelial cells. The number of particles present on the abluminal plasma membrane was constant if the amount of injected AuG increased. Therefore, the magnitude of receptor-mediated transcytosis of AuG appears to be regulated by endothelial cells. Kupffer cells internalized the ligand into cytoplasmic tubular structures via plasma membrane invaginations and transported the ligand exclusively to endosomes and lysosomes, suggesting that the ligand is degraded by Kupffer cells.


1990 ◽  
Vol 111 (5) ◽  
pp. 1811-1823 ◽  
Author(s):  
B D Beaumelle ◽  
A Gibson ◽  
C R Hopkins

Plasma membrane, coated pits, endosomes, and lysosomes were isolated from a mouse T lymphoma cell line using a density shift protocol in which these compartments were selectively loaded with gold conjugates. The plasma membrane was prepared after selective labeling for 1 h at 2 degrees C with gold-ricin and gave a yield of 40% according to enzymatic and antigenic markers. Endosomes were obtained by loading the cells for 2 h at 22 degrees C with gold complexed to an antimouse transferrin receptor mAb. Coated pits were isolated using a similar procedure, but after an incubation at 10 degrees C, which allowed deep invagination of the pits but prevented internalization. The yield (calculated using the recovery of [125I]transferrin) was 32% for endosomes and 10% for coated pits. Finally lysosomes were prepared by loading the cells for 18 h at 37 degrees C with gold low density lipoproteins (LDLs) followed by a 3-h chase at 37 degrees C with LDL alone. The final lysosome yield (based on the recovery of lysosomal enzymes) was 16%. Studies of the protein composition of these cellular compartments on two-dimensional gels showed that while some major proteins are present throughout the pathway, specific proteins can be identified in each of the isolated fractions. The greatest change in the pattern of protein constituents seen along the pathway was between endosomal and lysosomal preparations.


Author(s):  
J.L. Salisbury

The cultured human lymphoblastoid cell line WiL2 is a model system of choice for studies on receptor mediated endocytosis (RME). These cells display antigen receptor immunoglobulin of the IgM class (rIgM) as integral plasma membrane proteins which are present in diffuse cell surface distribution in unstimulated cells. Initially, rIgM occurs over uncoated regions of the plasma membrane. Crosslinking rIgM with multivalent antibody (ligand) results in the entry of ferritin-labelled ligand-rIgM complexes into the RME pathway (Figure 1). Stimulation of RME by ligand challenge results in an approximately three-fold increase in cell surface area displaying clathrin coats on the cytoplasmic face of the membrane. The newly formed coated pits are located directly beneath ferritin-labelled ligand-receptor complexes and their appearance is sensitive to the calmodulin directed drug trifluoperazine dihydrochloride (TFP). Calmodulin is a calcium dependent regulatory protein which recognizes local transient fluxes of cytoplasmic Ca+2 and activates a wide variety of enzymes and other protein systems. In addition, antibodies raised against calf brain calmodulin were used in indirect immunofluorescence studies.


1987 ◽  
Vol 105 (3) ◽  
pp. 1227-1240 ◽  
Author(s):  
S A Green ◽  
K P Zimmer ◽  
G Griffiths ◽  
I Mellman

We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.


2016 ◽  
Vol 27 (20) ◽  
pp. 3156-3163 ◽  
Author(s):  
Thomas J. Pucadyil ◽  
Sachin S. Holkar

Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy–based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME.


1977 ◽  
Author(s):  
R. Apitz-Castro ◽  
C.R. Torres

The mechanism by which adenosine (Ado) and 2-cloroadenosine (Cl-Ado) inhibit platelet aggregation is not clear. In order to get some insight into the mode of action of these compounds, we studied the effect of Cl-Ado on the uptake of Ado by intact platelets, the effect of these compounds on the endogenous phosphorylation of specific plasma membrane proteins, and its effect on the carboxymethylation pattern of plasma membrane proteins in intact platelets. Cl-Ado does not modify the uptake of Ado by intact platelets, nor is itself incorporated into the platelet’s pool of nucleotides. Phosphorylation of plasma membrane proteins is not affected by Cl-Ado; however, Ado produces a selective increase in the phosphorylation of one plasma membrane component of glycoproteic nature. As has been reported, phosphorylation of this glycoprotein is also modulated by cAMP (BBA, 455:371, 1976). Although the electrophoretic pattern of carboxymethylated plasma membranes is unaffected by Ado or Cl-Ado, it was found that the former markedly increases the label of all the susceptible proteins, while Cl-Ado selectively protects a single membrane component. Electrophoretically, this component seems to be related to the above mentioned glycoprotein. The results reported suggest that Ado and Cl-Ado interact with different components of the plasma membrane, impairing platelet aggregation through different mechanisms. In the case of Ado, two ways seem operative: a) A cAMP-like stimulation of a specific membrane glycoprotein and b) A more general perturbation of the membrane structure, perhaps through an Ado-carrier complex (Acta Med. Scand. 525:169, 1971). Cl-Ado seems to interact solely on the external surface of the plasma membrane, suggesting that the transmembrane phospho-glycoprotein previously described is in some way closely related to the ADP-receptor of the platelet plasma membrane.


1992 ◽  
Vol 3 (4) ◽  
pp. 895-906 ◽  
Author(s):  
D Brown ◽  
G L Waneck

Many proteins of eukaryotic cells are anchored to membranes by covalent linkage to glycosyl-phosphatidylinositol (GPI). These proteins lack a transmembrane domain, have no cytoplasmic tail, and are, therefore, located exclusively on the extracellular side of the plasma membrane. GPI-anchored proteins form a diverse family of molecules that includes membrane-associated enzymes, adhesion molecules, activation antigens, differentiation markers, protozoan coat components, and other miscellaneous glycoproteins. In the kidney, several GPI-anchored proteins have been identified, including uromodulin (Tamm-Horsfall glycoprotein), carbonic anhydrase type IV, alkaline phosphatase, Thy-1, BP-3, aminopeptidase P, and dipeptidylpeptidase. GPI-anchored proteins can be released from membranes with specific phospholipases and can be recovered from the detergent-insoluble pellet after Triton X-114 treatment of membranes. All GPI-anchored proteins are initially synthesized with a transmembrane anchor, but after translocation across the membrane of the endoplasmic reticulum, the ecto-domain of the protein is cleaved and covalently linked to a preformed GPI anchor by a specific transamidase enzyme. Although it remains obscure why so many proteins are endowed with a GPI anchor, the presence of a GPI anchor does confer some functional characteristics to proteins: (1) it is a strong apical targeting signal in polarized epithelial cells; (2) GPI-anchored proteins do not cluster into clathrin-coated pits but instead are concentrated into specialized lipid domains in the membrane, including so-called smooth pinocytotic vesicles, or caveoli; (3) GPI-anchored proteins can act as activation antigens in the immune system; (4) when the GPI anchor is cleaved by PI-phospholipase C or PI-phospholipase D, second messengers for signal transduction may be generated; (5) the GPI anchor can modulate antigen presentation by major histocompatibility complex molecules. Finally, at least one human disease, paroxysmal nocturnal hemoglobinuria, is a result of defective GPI anchor addition to plasma membrane proteins.


2015 ◽  
Vol 57 ◽  
pp. 189-201 ◽  
Author(s):  
Jay Shankar ◽  
Cecile Boscher ◽  
Ivan R. Nabi

Spatial organization of the plasma membrane is an essential feature of the cellular response to external stimuli. Receptor organization at the cell surface mediates transmission of extracellular stimuli to intracellular signalling molecules and effectors that impact various cellular processes including cell differentiation, metabolism, growth, migration and apoptosis. Membrane domains include morphologically distinct plasma membrane invaginations such as clathrin-coated pits and caveolae, but also less well-defined domains such as lipid rafts and the galectin lattice. In the present chapter, we will discuss interaction between caveolae, lipid rafts and the galectin lattice in the control of cancer cell signalling.


2009 ◽  
Vol 18 (6) ◽  
pp. 527-535 ◽  
Author(s):  
Andreas Lange ◽  
Claudia Kistler ◽  
Tanja B. Jutzi ◽  
Alexandr V. Bazhin ◽  
Claus Detlev Klemke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document