scholarly journals Detection of bacterial fluorescence from in vivo wound biofilms using a point‐of‐care fluorescence imaging device

Author(s):  
Andrea J. Lopez ◽  
Laura M. Jones ◽  
Landrye Reynolds ◽  
Rachel C. Diaz ◽  
Isaiah K. George ◽  
...  
Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 927
Author(s):  
Nadine Price

Foot ulcers and their bacterial burden produce a significant strain on the National Healthcare System (NHS). Subjectivity of wound infection assessment makes appropriate dressing selection challenging. To aid point-of-care detection of bacterial burden, a fluorescence imaging device (MolecuLight i:X) was introduced to the Whipps Cross Hospital Podiatry clinic. This retrospective pre/post-analysis evaluated how implementation of fluorescence imaging impacted (1) antimicrobial dressings and antibiotics use and (2) wound healing rates. Over a 2-year period 229 lower extremity wounds were treated. Wound-related outcomes and antimicrobial dressing costs were quantified over 1-year before (2018/2019) and after (2019/2020) incorporating fluorescence imaging into routine practice. The period of fluorescence imaging saw a 27% increase in the number of wounds seen, yet annual antimicrobial dressing expenditure decreased by 33%. Implementation of fluorescence imaging was also associated with a 49% decrease in prescription of antimicrobial dressings, a 33% decrease in antibiotic prescriptions, and a 23% increase in wound healing rates within 12-weeks (48% vs. 39%), likely due to earlier bacterial detection and improved wound hygiene. This increased healing rate is projected to decrease annual wound costs by 10% (£762 per patient). Routine bacterial imaging appears to diminish clinical and economic burden to patients and the NHS.


Author(s):  
Bhavika M. Shah ◽  
Devina Ganvir ◽  
Yugal K. Sharma ◽  
Shahzad Beg Mirza ◽  
R. N. Misra ◽  
...  

The prescription of antibiotics empirically without confirmation of an infective etiology is on the rise. Administration of appropriate antibiotics can be guided by real-time fluorescence imaging using a point-of-care device. These composite images show the presence, type and the burden of infection. The time saved by this method over microbiological testing, especially in resource-poor settings, can lead to a paradigm shift in treatment by facilitating prompt and adequate antimicrobial therapy, surgical debridement as well as follow-up. Thumbnail sketches of a series of four cases highlighting different scenarios in which a fluorescent imaging device utilizing artificial intelligence and machine learning was found useful is presented in this report.


Author(s):  
Pengrui Zhuang ◽  
Ke Xiang ◽  
Xiangxi Meng ◽  
Guohe Wang ◽  
Ziyuan Li ◽  
...  

A facile and green method was developed to fabricate Nd-DTPA on a large scale without byproducts for CT/spectral CT and NIR II fluorescence imaging of the gastrointestinal tract in vivo.


2021 ◽  
Author(s):  
Bo Sun ◽  
Xu Zhen ◽  
Xiqun Jiang

This review mainly introduced the MSNs-based nanoprobes for in vivo bioimaging applications including fluorescence imaging and photoacoustic imaging.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 428
Author(s):  
Emma Renard ◽  
Estel Collado Camps ◽  
Coline Canovas ◽  
Annemarie Kip ◽  
Martin Gotthardt ◽  
...  

Variable domains of heavy chain only antibodies (VHHs) are valuable agents for application in tumor theranostics upon conjugation to both a diagnostic probe and a therapeutic compound. Here, we optimized site-specific conjugation of the chelator DTPA and the photosensitizer IRDye700DX to anti-epidermal growth factor receptor (EGFR) VHH 7D12, for applications in nuclear imaging and photodynamic therapy. 7D12 was site-specifically equipped with bimodal probe DTPA-tetrazine-IRDye700DX using the dichlorotetrazine conjugation platform. Binding, internalization and light-induced toxicity of DTPA-IRDye700DX-7D12 were determined using EGFR-overexpressing A431 cells. Finally, ex vivo biodistribution of DTPA-IRDye700DX-7D12 in A431 tumor-bearing mice was performed, and tumor homing was visualized with SPECT and fluorescence imaging. DTPA-IRDye700DX-7D12 was retrieved with a protein recovery of 43%, and a degree of labeling of 0.56. Spectral properties of the IRDye700DX were retained upon conjugation. 111In-labeled DTPA-IRDye700DX-7D12 bound specifically to A431 cells, and they were effectively killed upon illumination. DTPA-IRDye700DX-7D12 homed to A431 xenografts in vivo, and this could be visualized with both SPECT and fluorescence imaging. In conclusion, the dichlorotetrazine platform offers a feasible method for site-specific dual-labeling of VHH 7D12, retaining binding affinity and therapeutic efficacy. The flexibility of the described approach makes it easy to vary the nature of the probes for other combinations of diagnostic and therapeutic compounds.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1219
Author(s):  
Alisha R. Oropallo ◽  
Charles Andersen ◽  
Raymond Abdo ◽  
Jenny Hurlow ◽  
Martha Kelso ◽  
...  

Excessive levels of bacteria impede wound healing and can lead to infectious complications. Unfortunately, clinical signs and symptoms of elevated bacterial burden are often unreliable. As a result, point--of--care fluorescence imaging, used to detect critical bacterial burden in wounds, is becoming widely recognized and adopted by clinicians across the globe as an accepted and added component of wound assessment protocol. A Delphi method was employed to establish consensus guidelines describing fluorescence imaging use. A multidisciplinary panel of 32 wound experts (56% MD, 22% podiatrist, 12.5% nurses/nurse practitioners) representing multiple sites of service (e.g., hospital outpatient, inpatient, private office, long-term care) completed two rounds of online questionnaires. The Delphi included key topics, including competencies required to perform imaging, clinical indications for imaging (e.g., signs/symptoms present, procedures warranting imaging), frequency of imaging, and a clinical workflow algorithm. Describing their clinical experiences of imaging impact, >80% reported changes in treatment plans, 96% reported that imaging-informed treatment plans led to improved wound healing, 78% reported reduced rates of amputations, and 83% reported reduced rates of microbiological sampling. The guidelines provided here will help to standardize use of fluorescence imaging among wound care providers and enhance the quality of patient care.


Immunobiology ◽  
2015 ◽  
Vol 220 (12) ◽  
pp. 1328-1336 ◽  
Author(s):  
Hua He ◽  
Xiaojie Tu ◽  
Juan Zhang ◽  
Desmond Omane Acheampong ◽  
Li Ding ◽  
...  

2008 ◽  
Vol 13 (1) ◽  
pp. 011006 ◽  
Author(s):  
Zhihong Zhang ◽  
Jie Yang ◽  
Jinling Lu ◽  
Juqiang Lin ◽  
Shaoqun Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document