AtRECQ2, a RecQ-helicase homologue from Arabidopsis thaliana, is able to disrupt different recombinogenic DNA-structures in vitro

2008 ◽  
Vol 0 (ja) ◽  
pp. 080414150319983 ◽  
Author(s):  
Daniela Kobbe ◽  
Sandra Blanck ◽  
Katharina Demand ◽  
Manfred Focke ◽  
Holger Puchta
Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

In vitro collapse of DNA by trivalent cations like spermidine produces torus (donut) shaped DNA structures thought to have a DNA organization similar to certain double stranded DNA bacteriophage and viruses. This has prompted our studies of these structures using freeze-etch low Pt-C metal (9Å) replica TEM. With a variety of DNAs the TEM and biochemical data support a circumferential DNA winding model for hydrated DNA torus organization. Since toruses are almost invariably oriented nearly horizontal to the ice surface one of the most accessible parameters of a torus population is annulus (ring) thickness. We have tabulated this parameter for populations of both nicked, circular (Fig. 1: n=63) and linear (n=40: data not shown) ϕX-174 DNA toruses. In both cases, as can be noted in Fig. 1, there appears to be a compact grouping of toruses possessing smaller dimensions separated from a dispersed population possessing considerably larger dimensions.


2021 ◽  
pp. 100627
Author(s):  
Katie J. Porter ◽  
Lingyan Cao ◽  
Yaodong Chen ◽  
Allan D. TerBush ◽  
Cheng Chen ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1357
Author(s):  
Rubén Torres ◽  
Carolina Gándara ◽  
Begoña Carrasco ◽  
Ignacio Baquedano ◽  
Silvia Ayora ◽  
...  

The DNA damage checkpoint protein DisA and the branch migration translocase RecG are implicated in the preservation of genome integrity in reviving haploid Bacillus subtilis spores. DisA synthesizes the essential cyclic 3′, 5′-diadenosine monophosphate (c‑di-AMP) second messenger and such synthesis is suppressed upon replication perturbation. In vitro, c-di-AMP synthesis is suppressed when DisA binds DNA structures that mimic stalled or reversed forks (gapped forks or Holliday junctions [HJ]). RecG, which does not form a stable complex with DisA, unwinds branched intermediates, and in the presence of a limiting ATP concentration and HJ DNA, it blocks DisA-mediated c-di-AMP synthesis. DisA pre-bound to a stalled or reversed fork limits RecG-mediated ATP hydrolysis and DNA unwinding, but not if RecG is pre-bound to stalled or reversed forks. We propose that RecG-mediated fork remodeling is a genuine in vivo activity, and that DisA, as a molecular switch, limits RecG-mediated fork reversal and fork restoration. DisA and RecG might provide more time to process perturbed forks, avoiding genome breakage.


Author(s):  
Laetitia Poidevin ◽  
Javier Forment ◽  
Dilek Unal ◽  
Alejandro Ferrando

ABSTRACTPlant reproduction is one key biological process very sensitive to heat stress and, as a consequence, enhanced global warming poses serious threats to food security worldwide. In this work we have used a high-resolution ribosome profiling technology to study how heat affects both the transcriptome and the translatome of Arabidopsis thaliana pollen germinated in vitro. Overall, a high correlation between transcriptional and translational responses to high temperature was found, but specific regulations at the translational level were also present. We show that bona fide heat shock genes are induced by high temperature indicating that in vitro germinated pollen is a suitable system to understand the molecular basis of heat responses. Concurrently heat induced significant down-regulation of key membrane transporters required for pollen tube growth, thus uncovering heat-sensitive targets. We also found that a large subset of the heat-repressed transporters is specifically up-regulated, in a coordinated manner, with canonical heat-shock genes in pollen tubes grown in vitro and semi in vivo, based on published transcriptomes from Arabidopsis thaliana. Ribosome footprints were also detected in gene sequences annotated as non-coding, highlighting the potential for novel translatable genes and translational dynamics.


2018 ◽  
Author(s):  
Frédérique Van Gijsegem ◽  
Frédérique Bitton ◽  
Anne-Laure Laborie ◽  
Yvan Kraepiel ◽  
Jacques Pédron

AbstractTo draw a global view of plant responses to interactions with the phytopathogenic enterobacterale Dickeya dadantii, a causal agent of soft rot diseases on many plant species, we analysed the early Arabidopsis responses to D. dadantii infection. We performed a genome-wide analysis of the Arabidopsis thaliana transcriptome during D. dadantii infection and conducted a genetic study of identified responses.A limited set of genes related to plant defence or interactions with the environment were induced at an early stage of infection, with an over-representation of genes involved in both the metabolism of indole glucosinolates (IGs) and the jasmonate (JA) defence pathway. Bacterial type I and type II secretion systems are required to trigger the induction of IG and JA-related genes while the type III secretion system appears to partially inhibit these defence pathways. Using Arabidopsis mutants impaired in JA biosynthesis or perception, we showed that induction of some IG metabolism genes was COI1-dependent but, surprisingly, JA-independent. Moreover, characterisation of D. dadantii disease progression in Arabidopsis mutants impaired in JA or IG pathways showed that JA triggers an efficient plant defence response that does not involve IGs.The induction of the IG pathway by bacterial pathogens has been reported several times in vitro. This study shows for the first time, that this induction does indeed occur in planta, but also that this line of defence is ineffective against D. dadantii infection, in contrast to its role to counteract herbivorous or fungal pathogen attacks.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 870 ◽  
Author(s):  
Peter Lansdorp ◽  
Niek van Wietmarschen

Guanine quadruplex (G4) structures are among the most stable secondary DNA structures that can form in vitro, and evidence for their existence in vivo has been steadily accumulating. Originally described mainly for their deleterious effects on genome stability, more recent research has focused on (potential) functions of G4 structures in telomere maintenance, gene expression, and other cellular processes. The combined research on G4 structures has revealed that properly regulating G4 DNA structures in cells is important to prevent genome instability and disruption of normal cell function. In this short review we provide some background and historical context of our work resulting in the identification of FANCJ, RTEL1 and BLM as helicases that act on G4 structures in vivo. Taken together these studies highlight important roles of different G4 DNA structures and specific G4 helicases at selected genomic locations and telomeres in regulating gene expression and maintaining genome stability.


Sign in / Sign up

Export Citation Format

Share Document