scholarly journals The Arabidopsis thaliana chloroplast division protein FtsZ1 counterbalances FtsZ2 filament stability in vitro

2021 ◽  
pp. 100627
Author(s):  
Katie J. Porter ◽  
Lingyan Cao ◽  
Yaodong Chen ◽  
Allan D. TerBush ◽  
Cheng Chen ◽  
...  
Author(s):  
Laetitia Poidevin ◽  
Javier Forment ◽  
Dilek Unal ◽  
Alejandro Ferrando

ABSTRACTPlant reproduction is one key biological process very sensitive to heat stress and, as a consequence, enhanced global warming poses serious threats to food security worldwide. In this work we have used a high-resolution ribosome profiling technology to study how heat affects both the transcriptome and the translatome of Arabidopsis thaliana pollen germinated in vitro. Overall, a high correlation between transcriptional and translational responses to high temperature was found, but specific regulations at the translational level were also present. We show that bona fide heat shock genes are induced by high temperature indicating that in vitro germinated pollen is a suitable system to understand the molecular basis of heat responses. Concurrently heat induced significant down-regulation of key membrane transporters required for pollen tube growth, thus uncovering heat-sensitive targets. We also found that a large subset of the heat-repressed transporters is specifically up-regulated, in a coordinated manner, with canonical heat-shock genes in pollen tubes grown in vitro and semi in vivo, based on published transcriptomes from Arabidopsis thaliana. Ribosome footprints were also detected in gene sequences annotated as non-coding, highlighting the potential for novel translatable genes and translational dynamics.


2018 ◽  
Author(s):  
Frédérique Van Gijsegem ◽  
Frédérique Bitton ◽  
Anne-Laure Laborie ◽  
Yvan Kraepiel ◽  
Jacques Pédron

AbstractTo draw a global view of plant responses to interactions with the phytopathogenic enterobacterale Dickeya dadantii, a causal agent of soft rot diseases on many plant species, we analysed the early Arabidopsis responses to D. dadantii infection. We performed a genome-wide analysis of the Arabidopsis thaliana transcriptome during D. dadantii infection and conducted a genetic study of identified responses.A limited set of genes related to plant defence or interactions with the environment were induced at an early stage of infection, with an over-representation of genes involved in both the metabolism of indole glucosinolates (IGs) and the jasmonate (JA) defence pathway. Bacterial type I and type II secretion systems are required to trigger the induction of IG and JA-related genes while the type III secretion system appears to partially inhibit these defence pathways. Using Arabidopsis mutants impaired in JA biosynthesis or perception, we showed that induction of some IG metabolism genes was COI1-dependent but, surprisingly, JA-independent. Moreover, characterisation of D. dadantii disease progression in Arabidopsis mutants impaired in JA or IG pathways showed that JA triggers an efficient plant defence response that does not involve IGs.The induction of the IG pathway by bacterial pathogens has been reported several times in vitro. This study shows for the first time, that this induction does indeed occur in planta, but also that this line of defence is ineffective against D. dadantii infection, in contrast to its role to counteract herbivorous or fungal pathogen attacks.


2016 ◽  
Vol 63 (3) ◽  
Author(s):  
Thuy T. P. Doan ◽  
Anders S. Carlsson ◽  
Sten Stymne ◽  
Per Hofvander

Fatty alcohols and derivatives are important for proper deposition of a functional pollen wall. Mutations in specific genes encoding fatty acid reductases (FAR) responsible for fatty alcohol production cause abnormal development of pollen. A disrupted AtFAR2 (MS2) gene in Arabidopsis thaliana results in pollen developing an abnormal exine layer and a reduced fertility phenotype. AtFAR2 has been shown to be targeted to chloroplasts and in a purified form to be specific for acyl-ACP substrates. Here, we present data on the in vitro and in planta characterizations of AtFAR2 from A. thaliana and show that this enzyme has the ability to use both, C16:0-ACP and C16:0-CoA, as substrates to produce C16:0-alcohol. Our results further show that AtFAR2 is highly similar in properties and substrate specificity to AtFAR6 for which in vitro data has been published, and which is also a chloroplast localized enzyme. This suggests that although AtFAR2 is the major enzyme responsible for exine layer functionality, AtFAR6 might provide functional redundancy to AtFAR2.


FEBS Letters ◽  
2011 ◽  
Vol 585 (17) ◽  
pp. 2693-2697 ◽  
Author(s):  
Takalani Mulaudzi ◽  
Ndiko Ludidi ◽  
Oziniel Ruzvidzo ◽  
Monique Morse ◽  
Nicolette Hendricks ◽  
...  

2006 ◽  
Vol 33 (9) ◽  
pp. 847 ◽  
Author(s):  
Adamantia Agalou ◽  
Herman P. Spaink ◽  
Andreas Roussis

The metabolic role and regulation of selenium, particularly in plants, is poorly understood. One of the proteins probably involved in the metabolic regulation of this element is the selenium-binding protein (SBP) with homologues present across prokaryotic and eukaryotic species. The high degree of conservation of SBP in different organisms suggests that this protein may play a role in fundamental biological processes. In order to gain insight into the biochemical function of SBP in plants we used the yeast two-hybrid system to identify proteins that potentially interact with an Arabidopsis thaliana (L.) Heynh. homologue. Among the putative binding partners of SBP, a NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a fructose-bisphosphate aldolase (FBA) were found as reliable positive candidates. The interaction of these proteins with SBP was confirmed by in vitro binding assays. Previous findings in Escherichia coli, demonstrated the direct binding of selenium to both GAPDH and aldolase. Therefore our results reveal the interaction, at least in pairs, of three proteins that are possibly linked to selenium and suggest the existence of a protein network consisting of at least SBP, GAPDH and FBA, triggered by or regulating selenium metabolism in plant cells.


2007 ◽  
Vol 51 (3) ◽  
pp. 436-442 ◽  
Author(s):  
K. B. Carrasco ◽  
R. Fornasiero ◽  
A. Tassoni ◽  
N. Bagni

Plant Science ◽  
2018 ◽  
Vol 266 ◽  
pp. 1-8 ◽  
Author(s):  
Long Wang ◽  
Zhenhua Liu ◽  
Meng Qiao ◽  
Fengning Xiang

Sign in / Sign up

Export Citation Format

Share Document