chloroplast division
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 17)

H-INDEX

36
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanhua Zhang ◽  
Xiaochen Zhang ◽  
Huanshuo Cui ◽  
Xinzhu Ma ◽  
Guipeng Hu ◽  
...  

Chloroplasts evolved from a free-living cyanobacterium through endosymbiosis. Similar to bacterial cell division, chloroplasts replicate by binary fission, which is controlled by the Minicell (Min) system through confining FtsZ ring formation at the mid-chloroplast division site. MinD, one of the most important members of the Min system, regulates the placement of the division site in plants and works cooperatively with MinE, ARC3, and MCD1. The loss of MinD function results in the asymmetric division of chloroplasts. In this study, we isolated one large dumbbell-shaped and asymmetric division chloroplast Arabidopsis mutant Chloroplast Division Mutant 75 (cdm75) that contains a missense mutation, changing the arginine at residue 49 to a histidine (R49H), and this mutant point is located in the N-terminal Conserved Terrestrial Sequence (NCTS) motif of AtMinD1, which is only typically found in terrestrial plants. This study provides sufficient evidence to prove that residues 1–49 of AtMinD1 are transferred into the chloroplast, and that the R49H mutation does not affect the function of the AtMinD1 chloroplast transit peptide. Subsequently, we showed that the point mutation of R49H could remove the punctate structure caused by residues 1–62 of the AtMinD1 sequence in the chloroplast, suggesting that the arginine in residue 49 (Arg49) is essential for localizing the punctate structure of AtMinD11–62 on the chloroplast envelope. Unexpectedly, we found that AtMinD1 could interact directly with ARC6, and that the R49H mutation could prevent not only the previously observed interaction between AtMinD1 and MCD1 but also the interaction between AtMinD1 and ARC6. Thus, we believe that these results show that the AtMinD1 NCTS motif is required for their protein interaction. Collectively, our results show that AtMinD1 can guide the placement of the division site to the mid chloroplast through its direct interaction with ARC6 and reveal the important role of AtMinD1 in regulating the AtMinD1-ARC6 interaction.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiang Chang ◽  
Fanyu Zhang ◽  
Haiyang Qin ◽  
Peng Liu ◽  
Jianfeng Wang ◽  
...  

AbstractThe proliferation and development of chloroplasts are important for maintaining the normal chloroplast population in plant tissues. Most studies have focused on chloroplast maintenance in leaves. In this study, we identified a spontaneous mutation in a tomato mutant named suffulta (su), in which the stems appeared albinic while the leaves remained normal. Map-based cloning showed that Su encodes a DnaJ heat shock protein that is a homolog of the Arabidopsis gene AtARC6, which is involved in chloroplast division. Knockdown and knockout of SlARC6 in wild-type tomato inhibit chloroplast division, indicating the conserved function of SlARC6. In su mutants, most mesophyll cells contain only one or two giant chloroplasts, while no chloroplasts are visible in 60% of stem cells, resulting in the albinic phenotype. Compared with mature tissues, the meristem of su mutants suggested that chloroplasts could partially divide in meristematic cells, suggesting the existence of an alternative mechanism in those dividing cells. Interestingly, the adaxial petiole cells of su mutants contain more chloroplasts than the abaxial cells. In addition, prolonged lighting can partially rescue the albinic phenotypes in su mutants, implying that light may promote SlACR6-independent chloroplast development. Our results verify the role of SlACR6 in chloroplast division in tomato and uncover the tissue-specific regulation of chloroplast development.


2021 ◽  
pp. 100627
Author(s):  
Katie J. Porter ◽  
Lingyan Cao ◽  
Yaodong Chen ◽  
Allan D. TerBush ◽  
Cheng Chen ◽  
...  

2020 ◽  
Vol 133 (4) ◽  
pp. 537-548 ◽  
Author(s):  
Thi Huong Do ◽  
Prapaporn Pongthai ◽  
Menaka Ariyarathne ◽  
Ooi-Kock Teh ◽  
Tomomichi Fujita

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Heying Li ◽  
Mei Bai ◽  
Xingshan Jiang ◽  
Rongxin Shen ◽  
Huina Wang ◽  
...  

Abstract Background Maize bsd2 (bundle sheath defective2) is a classical C4 mutant with defective C4 photosynthesis, accompanied with reduced accumulation of Rubisco (ribulose bisphosphate carboxylase oxygenase) and aberrant mature chloroplast morphology in the bundle sheath (BS) cells. However, as a hypothetical chloroplast chaperone, the effects of BSD2 on C4 chloroplast development have not been fully examined yet, which precludes a full appreciation of BSD2 function in C4 photosynthesis. The aims of our study are to find out the role ofBSD2 in regulating chloroplasts development in maize leaves, and to add new insights into our understanding of C4 biology. Results We found that at the chloroplast maturation stage, the thylakoid membranes of chloroplasts in the BS and mesophyll (M) cells became significantly looser, and the granaof chloroplasts in the M cells became thinner stacking in the bsd2 mutant when compared with the wildtype plant. Moreover, at the early chloroplast development stage, the number of dividing chloroplasts and the chloroplast division rate are both reduced in the bsd2 mutant, compared with wild type. Quantitative reverse transcriptase-PCR analysis revealed that the expression of both thylakoid formation-related genesand chloroplast division-related genes is significantly reduced in the bsd2 mutants. Further, we showed that BSD2 interacts physically with the large submit of Rubisco (LS) in Bimolecular Fluorescence Complementation assay. Conclusions Our combined results suggest that BSD2 plays an essential role in regulating the division and differentiation of the dimorphic BS and M chloroplasts, and that it acts at a post-transcriptional level to regulate LS stability or assembly of Rubisco.


2019 ◽  
Author(s):  
Heying Li ◽  
Mei Bai ◽  
Xingshan Jiang ◽  
Rongxin Shen ◽  
Huina Wang ◽  
...  

Abstract Background: Maize bsd2 ( bundle sheath defective2 ) is a classical C 4 mutant with defective C 4 photosynthesis, accompanied with reduced accumulation of Rubisco (ribulose bisphosphate carboxylase oxygenase) and aberrant mature chloroplast morphology in the bundle sheath (BS) cells. However, as a hypothetical chloroplast chaperone, the effects of BSD2 on C 4 chloroplast development have not been fully examined yet, which precludes a full appreciation of BSD2 function in C 4 photosynthesis. The aims of our study are to find out the role of BSD2 in regulating chloroplasts development in maize leaves, and to add new insights into our understanding of C 4 biology. Results: We found that at the chloroplast maturation stage, the thylakoid membranes of chloroplasts in the BS and mesophyll (M) cellsbecame significantly looser, and the granaof chloroplasts in the M cells became thinner stacking in the bsd2 mutant when compared with the wildtype plant. Moreover, at the early chloroplast development stage, the number of dividing chloroplasts and the chloroplast division rate are both reduced in the bsd2 mutant, compared with wild type. Quantitative reverse transcriptase-PCR analysis revealed that the expression of both thylakoid formation-related genesand chloroplast division-related genes is significantly reduced in the bsd2 mutants. Further, we showed that BSD2 interacts physically with the large submit of Rubisco (LS) in Bimolecular Fluorescence Complementation assay. Conclusions: Our combined results suggest that BSD2 plays an essential role in regulating the division and differentiation of the dimorphic BS and M chloroplasts, and that it acts at a post-transcriptional level to regulate LS stability or assembly of Rubisco.


2019 ◽  
Author(s):  
Heying Li ◽  
Mei Bai ◽  
Xingshan Jiang ◽  
Rongxin Shen ◽  
Huina Wang ◽  
...  

Abstract Background: Maize bsd2 (bundle sheath defective2) is a classical C4 mutant with defective C4 photosynthesis, accompanied with reduced accumulation of Rubisco (ribulose bisphosphate carboxylase oxygenase) and aberrant mature chloroplast morphology in the bundle sheath (BS) cells. However, as a hypothetical chloroplast chaperone, the effects of BSD2 on C4 chloroplast development have not been fully examined yet, which precludes a full appreciation of BSD2 function in C4 photosynthesis. The aims of our study are to find out the role ofBSD2 in regulating chloroplasts development in maize leaves, and to add new insights into our understanding of C4 biology. Results: We found that at the chloroplast maturation stage, the thylakoid membranes of chloroplasts in the BS and mesophyll (M) cellsbecame significantly looser, and the granaof chloroplasts in the M cells became thinner stacking in the bsd2 mutant when compared with the wildtype plant. Moreover, at the early chloroplast development stage, the number of dividing chloroplasts and the chloroplast division rate are both reduced in the bsd2 mutant, compared with wild type. Quantitative reverse transcriptase-PCR analysis revealed that the expression of both thylakoid formation-related genesand chloroplast division-related genes is significantly reduced in the bsd2 mutants. Further, we showed that BSD2 interacts physically with the large submit of Rubisco (LS) in Bimolecular Fluorescence Complementation assay. Conclusions: Our combined results suggest that BSD2 plays an essential role in regulating the division and differentiation of the dimorphic BS and M chloroplasts, and that it acts at a post-transcriptional level to regulate LS stability or assembly of Rubisco.


Sign in / Sign up

Export Citation Format

Share Document