A Fundamental Problem with Amino-Acid-Sequence Characters for Phylogenetic Analyses

Cladistics ◽  
2000 ◽  
Vol 16 (3) ◽  
pp. 274-282 ◽  
Author(s):  
Mark P. Simmons
Author(s):  
Qianqian Song ◽  
Zhixiu Wang ◽  
Hongliang Zhang ◽  
Xiangxiang Li ◽  
Yang Zhang ◽  
...  

Accumulating studies have indicated that the long-chain fatty acyl-CoA1 (ACSL1) gene is related to fat deposition and meat quality in mammals. However, few studies have investigated the relationship between ACSL1 and lipid deposition in ducks. To examine this, we assessed the physicochemical property, homologous alignment and phylogenetic analyses of the ACSL1 amino acid sequence using bioinformatics tools. The analysis indicated that the ACSL1 amino acid sequence varies in animals, and the duck ACSL1 protein is most closely related to that of chicken. Two SNP sites were identified at 1749 and 1905 bp of the coding region of ACSL1 by sequencing. Quantitative real-time PCR and western blotting were used to measure mRNA and protein levels in abdominal fat, breast muscle and liver tissue of Pekin duck (BD) and Cherry Valley duck (CD). mRNA and protein expression were significantly higher in BD than in CD in abdominal fat and liver tissue (P < 0.05). In breast muscle, the mRNA level of ACSL1 was also significantly higher in BD than in CD (P < 0.05), and protein expression in BD tended to be higher than that of CD. These results suggest that ACSL1 may contribute to lipid deposition and meat quality in ducks.


2019 ◽  
Vol 64 (No. 02) ◽  
pp. 60-66
Author(s):  
R Moutelikova ◽  
J Prodelalova

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that invades the central nervous system in piglets. The incidence of PHEV among pigs in many countries is rising, and the economic losses to the pig industry may be significant. Serological studies suggest that PHEV is spread worldwide. However, no surveillance has been carried out in the Czech Republic. In this study, eight pig farms were screened for the presence of members of the Coronaviridae family with the use of reverse transcription PCR. A collection of 123 faecal samples and 151 nasal swabs from domestic pigs were analysed. In PHEV-positive samples, almost the complete coding sequence of the nucleocapsid gene was amplified and the acquired sequences were compared to those of geographically dispersed PHEV strains; phylogenetic analyses were also performed. PHEV was present in 7.9% of nasal swabs taken from different age categories of pigs. No other swine coronaviruses were detected. The amino acid sequence of the Czech PHEV strains showed 95.8–98.1% similarity to other PHEV reference strains in GenBank. PHEV strains collected from animals on the same farm were identical; however, strains from different farms have only exhibited only 96.7–98.7% amino acid sequence identity. Our study demonstrates the presence of PHEV in pigs in the Czech Republic. The Czech PHEV strains were evolutionarily closest to the Belgium strain VW572.


2004 ◽  
Vol 85 (8) ◽  
pp. 2191-2197 ◽  
Author(s):  
Tomoko Ogawa ◽  
Yoshimi Tomita ◽  
Mineyuki Okada ◽  
Kuniko Shinozaki ◽  
Hiroko Kubonoya ◽  
...  

To investigate the prevalence of bovine papillomavirus (BPV) in bovine papilloma and healthy skin, DNA extracted from teat papillomas and healthy teat skin swabs was analysed by PCR using the primer pairs FAP59/FAP64 and MY09/MY11. Papillomavirus (PV) DNA was detected in all 15 papilloma specimens using FAP59/FAP64 and in 8 of the 15 papilloma specimens using MY09/MY11. In swab samples, 21 and 8 of the 122 samples were PV DNA positive using FAP59/FAP64 and MY09/MY11, respectively. Four BPV types (BPV-1, -3, -5 and -6), two previously identified putative BPV types (BAA1 and -5) and 11 putative new PV types (designated BAPV1 to -10 and BAPV11MY) were found in the 39 PV DNA-positive samples. Amino acid sequence alignments of the putative new PV types with reported BPVs and phylogenetic analyses of the putative new PV types with human and animal PV types showed that BAPV1 to -10 and BAPV11MY are putative new BPV types. These results also showed the genomic diversity and extent of subclinical infection of BPV.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 81 ◽  
Author(s):  
Binhui Zhan ◽  
Mengji Cao ◽  
Kaina Wang ◽  
Xifeng Wang ◽  
Xueping Zhou

Three RNA viruses—Cucumis melo cryptic virus (CmCV), Cucumis melo amalgavirus 1 (CmAV1), and melon necrotic spot virus (MNSV)—were identified from a melon (Cucumis melo) transcriptome dataset. CmCV has two dsRNA genome segments; dsRNA-1 is 1592 bp in size, containing a conserved RNA-dependent RNA polymerase (RdRp), and dsRNA-2 is 1715 bp in size, and encodes a coat protein (CP). The sequence alignment and phylogenetic analyses of the CmCV RdRp and CP indicated CmCV clusters with approved or putative deltapartitiviruses in well-supported monophyletic clade. The RdRp of CmCV shared an amino acid sequence identity of 60.7% with the closest RdRp of beet cryptic virus 3, and is <57% identical to other partitiviruses. CmAV1 is a nonsegmented dsRNA virus with a genome of 3424 bp, including two partially overlapping open reading frames (ORFs) encoding a putative CP and RdRp. The sequence alignment and phylogenetic analyses of CmAV1 RdRp revealed that it belongs to the genus Amalgavirus in the family Amalgaviridae. The RdRp of CmAV1 shares 57.7% of its amino acid sequence identity with the most closely related RdRp of Phalaenopsis equestris amalgavirus 1, and is <47% identical to the other reported amalgaviruses. These analyses suggest that CmCV and CmAV1 are novel species in the genera Amalgavirus and Deltapartitivirus, respectively. These findings enrich our understanding of new plant dsRNA virus species.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 754-757 ◽  
Author(s):  
Dimitre S. Mollov ◽  
Maya C. Hayslett ◽  
Kari A. Eichstaedt ◽  
Noelle G. Beckman ◽  
Margery L. Daughtrey ◽  
...  

A filamentous virus identified in coleus (Coleus × hybrida) in Minnesota and New York was found to cause veinal necrosis in coleus, although this symptom was observed only under certain conditions. The virus was transmitted readily by mechanical inoculation to coleus and Nicotiana spp. and was not transmitted by Myzus persicae. The particles of the coleus virus had a modal length of 640 nm and a single capsid protein with an estimated molecular mass of 34 kDa. The amino acid sequence of the coat protein region of the coleus virus genome had significant similarities only to the corresponding domain of carlaviruses. Based on virion morphology, capsid protein size, genome size and organization, amino acid sequence, and phylogenetic analyses, the coleus virus, which was named provisionally Coleus vein necrosis virus (CVNV), was concluded to be a new definitive member of the genus Carlavirus. A 2-kb fragment of the 3′ terminus of the CVNV genome sequence is accessible under accession number DQ915963 in GenBank.


2004 ◽  
Vol 85 (11) ◽  
pp. 3205-3212 ◽  
Author(s):  
M. Steven Oberste ◽  
Suzanne M. Michele ◽  
Kaija Maher ◽  
David Schnurr ◽  
Daniel Cisterna ◽  
...  

Sequencing of the gene that encodes the capsid protein VP1 has been used as a surrogate for antigenic typing in order to distinguish enterovirus serotypes; three new serotypes were identified recently by this method. In this study, 14 enterovirus isolates from six countries were characterized as members of two new types within the species Human enterovirus B, based on sequencing of the complete capsid-encoding (P1) region. Isolates within each of these two types differed significantly from one another and from all other known enterovirus serotypes on the basis of sequences that encode either VP1 alone or the entire P1 region. Members of each type were ⩾77·2 % identical to one another (89·5 % amino acid identity) in VP1, but members of the two different types differed from one another and from other enteroviruses by ⩾31 % in nucleotide sequence (25 % amino acid sequence difference), indicating that the two groups represent separate new candidate enterovirus types. The complete P1 sequences differed from those of all other enterovirus serotypes by ⩾31 % (26 % amino acid sequence difference), but were highly conserved within a serotype (<8 % amino acid sequence difference). Phylogenetic analyses demonstrated that isolates of the same serotype were monophyletic in both VP1 and the capsid as a whole, as shown previously for other enterovirus serotypes. This paper proposes that these 14 isolates should be classified as members of two new human enterovirus types, enteroviruses 74 and 75 (EV74 and EV75).


Author(s):  
M.K. Lamvik ◽  
L.L. Klatt

Tropomyosin paracrystals have been used extensively as test specimens and magnification standards due to their clear periodic banding patterns. The paracrystal type discovered by Ohtsuki1 has been of particular interest as a test of unstained specimens because of alternating bands that differ by 50% in mass thickness. While producing specimens of this type, we came across a new paracrystal form. Since this new form displays aligned tropomyosin molecules without the overlaps that are characteristic of the Ohtsuki-type paracrystal, it presents a staining pattern that corresponds to the amino acid sequence of the molecule.


1989 ◽  
Vol 61 (03) ◽  
pp. 437-441 ◽  
Author(s):  
Cindra Condra ◽  
Elka Nutt ◽  
Christopher J Petroski ◽  
Ellen Simpson ◽  
P A Friedman ◽  
...  

SummaryThe present work reports the discovery and charactenzation of an anticoagulant protein in the salivary gland of the giant bloodsucking leech, H. ghilianii, which is a specific and potent inhibitor of coagulation factor Xa. The inhibitor, purified to homogeneity, displayed subnanomolar inhibition of bovine factor Xa and had a molecular weight of approximately 15,000 as deduced by denaturing SDS-PAGE. The amino acid sequence of the first 43 residues of the H. ghilianii derived inhibitor displayed a striking homology to antistasin, the recently described subnanomolar inhibitor of factor Xa isolated from the Mexican leech, H. officinalis. Antisera prepared to antistasin cross-reacted with the H. ghilianii protein in Western Blot analysis. These data indicate that the giant Amazonian leech, H. ghilianii, and the smaller Mexican leech, H. officinalrs, have similar proteins which disrupt the normal hemostatic clotting mechanisms in their mammalian host’s blood.


1993 ◽  
Vol 69 (03) ◽  
pp. 217-220 ◽  
Author(s):  
Jonathan B Rosenberg ◽  
Peter J Newman ◽  
Michael W Mosesson ◽  
Marie-Claude Guillin ◽  
David L Amrani

SummaryParis I dysfibrinogenemia results in the production of a fibrinogen molecule containing a functionally abnormal γ-chain. We determined the basis of the molecular defect using polymerase chain reaction (PCR) to amplify the γ-chain region of the Paris I subject’s genomic DNA. Comparative sequence analysis of cloned PCR segments of normal and Paris I genomic DNA revealed only an A→G point mutation occurring at nucleotide position 6588 within intron 8 of the Paris I γ-chain gene. We examined six normal individuals and found only normal sequence in this region, indicating that this change is not likely to represent a normal polymorphism. This nucleotide change leads to a 45 bp fragment being inserted between exons 8 and 9 in the mature γparis I chain mRNA, and encodes a 15 amino acid insert after γ350 [M-C-G-E-A-L-P-M-L-K-D-P-C-Y]. Alternative splicing of this region from intron 8 into the mature Paris I γ-chain mRNA also results after translation into a substitution of S for G at position γ351. Biochemical studies of 14C-iodoacetamide incorporation into disulfide-reduced Paris I and normal fibrinogen corroborated the molecular biologic predictions that two additional cysteine residues exist within the γpariS I chain. We conclude that the insertion of this amino acid sequence leads to a conformationallyaltered, and dysfunctional γ-chain in Paris I fibrinogen.


1979 ◽  
Vol 42 (05) ◽  
pp. 1652-1660 ◽  
Author(s):  
Francis J Morgan ◽  
Geoffrey S Begg ◽  
Colin N Chesterman

SummaryThe amino acid sequence of the subunit of human platelet factor 4 has been determined. Human platelet factor 4 consists of identical subunits containing 70 amino acids, each with a molecular weight of 7,756. The molecule contains no methionine, phenylalanine or tryptophan. The proposed amino acid sequence of PF4 is: Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser- Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Pro-Thr-Ala-Gin- Leu-Ile-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Cys-Leu-Asp-Leu-Gln-Ala-Pro-Leu-Tyr-Lys-Lys- Ile-Ile-Lys-Lys-Leu-Leu-Glu-Ser. From consideration of the homology with p-thromboglobulin, disulphide bonds between residues 10 and 36 and between residues 12 and 52 can be inferred.


Sign in / Sign up

Export Citation Format

Share Document