Effect of Creep Damage on the Tensile Creep Behavior of a Siliconized Silicon Carbide

1989 ◽  
Vol 72 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Daniel F. Carroll ◽  
Richard E. Tressler
1994 ◽  
Vol 77 (12) ◽  
pp. 3259-3262 ◽  
Author(s):  
Tatsuki Ohji ◽  
Atsushi Nakahira ◽  
Takeshi Hirano ◽  
Koichi Niihara

2015 ◽  
Vol 750 ◽  
pp. 266-271 ◽  
Author(s):  
Yu Zhou ◽  
Xue Dong Chen ◽  
Zhi Chao Fan ◽  
Yi Chun Han

The creep behavior of 2.25Cr-1Mo-0.25V ferritic steel was investigated using a set of physically-based creep damage constitutive equations. The material constants were determined according to the creep experimental data, using an efficient genetic algorithm. The user-defined subroutine for creep damage evolution was developed based on the commercial finite element software ANSYS and its user programmable features (UPFs), and the numerical simulation of the stress distribution and the damage evolution of the semi V-type notched specimen during creep were studied. The results showed that the genetic algorithm is a very efficient optimization approach for the parameter identification of the creep damage constitutive equations, and finite element simulation based on continuum damage mechanics can be used to analyze and predict the creep damage evolution under multi-axial stress states.


1998 ◽  
pp. 105-117
Author(s):  
Keishiro Iriya ◽  
Tatsuya Hattori ◽  
Hidetaka Umehara
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jianjun He ◽  
Kaijun Yang ◽  
Gang Wang ◽  
Wei Li ◽  
Jiangyong Bao ◽  
...  

The heat exchange tubes of solar thermal power generation work in molten salt environment with periodic temperature change. In order to reveal the tensile creep behavior of 12Cr1MoV pipeline steel under high-temperature alkali metal salt environment, the tensile creep behavior of 12Cr1MoV alloy under different applied load and reaction temperature in high-temperature alkali metal chloride salt environment was studied. The results show that the deformation of 12Cr1MoV alloy in 600°C, NaCl-35%KCl mixed salt environment is mainly controlled by diffusion creep; with the increase of stress, the creep life of 12Cr1MoV alloy decreases. The creep fracture mechanism of 12Cr1MoV alloy in 600°C, NaCl-35%KCl mixed salt environment is intergranular ductile fracture; the increase of temperature will enhance the activation and oxidation of the chlorine atoms, thereby accelerating the corrosion of the base metal and increasing the spheroidization speed of the pearlite matrix, and the creep deformation rate of the alloy increases with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document