Influence of Moisture on Ultra-High-Temperature Tensile Creep Behavior ofin SituSingle-Crystal Oxide Ceramic Alumina/Yttrium Aluminum Garnet Eutectic Composite

2003 ◽  
Vol 86 (6) ◽  
pp. 951-958 ◽  
Author(s):  
Yoshihisa Harada ◽  
Takayuki Suzuki ◽  
Kazumi Hirano ◽  
Yoshiharu Waku
2003 ◽  
Vol 125 (3) ◽  
pp. 277-282 ◽  
Author(s):  
Noriyuki Miyazaki ◽  
Toru Ikeda ◽  
Toshihiro Komura

Al 2 O 3 / YAG eutectic composite has been developed for a structural material used in ultra high temperature environments over 1500°C such as a gasturbine. Creep behavior is one of the important material properties in ultra high temperature materials. In the present study, we propose an image-based finite element analysis for estimating the steady state creep behavior of the Al2O3/YAG eutectic composite. In the image-based finite element analysis, microstructure of the material taken by a SEM is modeled into a finite element mesh using a software for image process. Then finite element creep analyses are carried out to obtain the steady state creep behavior of the Al2O3/YAG eutectic composite by using steady state creep constitutive equations for both Al2O3 single crystal and YAG single crystal. The results of steady state creep behavior obtained from the image-based finite element analysis are compared with the experimental results. It is found that the steady state creep behavior of the Al2O3/YAG eutectic composite is accurately estimated by the image-based finite element analysis. Furthermore, we examine the effect of volume fractions of the constituents on the steady state creep behavior of the Al2O3/YAG eutectic composite.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jianjun He ◽  
Kaijun Yang ◽  
Gang Wang ◽  
Wei Li ◽  
Jiangyong Bao ◽  
...  

The heat exchange tubes of solar thermal power generation work in molten salt environment with periodic temperature change. In order to reveal the tensile creep behavior of 12Cr1MoV pipeline steel under high-temperature alkali metal salt environment, the tensile creep behavior of 12Cr1MoV alloy under different applied load and reaction temperature in high-temperature alkali metal chloride salt environment was studied. The results show that the deformation of 12Cr1MoV alloy in 600°C, NaCl-35%KCl mixed salt environment is mainly controlled by diffusion creep; with the increase of stress, the creep life of 12Cr1MoV alloy decreases. The creep fracture mechanism of 12Cr1MoV alloy in 600°C, NaCl-35%KCl mixed salt environment is intergranular ductile fracture; the increase of temperature will enhance the activation and oxidation of the chlorine atoms, thereby accelerating the corrosion of the base metal and increasing the spheroidization speed of the pearlite matrix, and the creep deformation rate of the alloy increases with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document