Influence of tree shade on plant water status, gas exchange, and water use efficiency of Panicum maximum Jacq. and Themeda triandra Forsk. in a Kenya savanna

1995 ◽  
Vol 33 (2) ◽  
pp. 114-123 ◽  
Author(s):  
J. I. KINYAMARIO ◽  
M. J. TRLICA ◽  
T. J. NJOKA
1992 ◽  
Vol 43 (5) ◽  
pp. 1019 ◽  
Author(s):  
AL Garside ◽  
RJ Lawn ◽  
RC Muchow ◽  
DE Byth

Plant and soil water status, crop water use and water use efficiency, as affected by irrigation treatment, were monitored over two seasons for soybean cv. Ross, sown in the late wet season in the Ord Irrigation Area in north Western Australia. Irrigation treatments were, in both seasons, furrow irrigation after cumulative open pan evaporative losses of 30, 60 120 and 240 mm, and in the second year, an additional treatment, saturated soil culture (continuous furrow irrigation, analogous to irrigation after 0 mm pan evaporation). As expected, during periods of strong evaporative demand plant water status, as indicated by leaf water potential and leaf conductance of water vapour, was consistently greater in the more frequently irrigated treatments, while soil water depletion occurred to greater extent and depth in the less frequently irrigated treatments. However, total soil water use was directly proportional to crop growth, so that there was little evidence that water use efficiency was enhanced by restricting water supply in this environment. Indeed, efficiency of water use even under the continuous furrow irrigation system was comparable with that from other irrigation treatments. The responses are interpreted to imply that there is unlikely to be any economic advantage to the use of limited supplemental irrigation in this environment.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 647c-647
Author(s):  
L. Phavaphutanon ◽  
F.T. Davies ◽  
T.W. Boutton ◽  
S.A. Duray

Mycorrhizal (VAM) and phosphorus (P)-supplemented nonmycorrhizal neem plants (non-VAM) of comparable size and tissue nutrition were subjected to a slowly developing drought. VAM and non-VAM plants responded to drought similarly. However, mycorrhiza compensated for low P supply, allowing VAM plants to have comparable growth, tissue P, and other physiological parameters as non-VAM plants, which received higher P supply. Drought decreased growth, transpiration (E), photosynthetic rate (A), stomatal conductance (gs), and plant water status. Osmotic adjustment did not occur, but the relatively low osmotic potential of this species helped maintain turgor during drought. Plant water relations and A of stressed plants fully recovered in 24 hours after rehydration, while gs and E partially recovered. Instantaneous water use efficiency (A/E) increased during drought and recovery, except for a decrease at peak stress due to very low A. Carbon isotope discrimination (D) values of mature leaves remained constant regardless of mycorrhiza or drought. However, D decreased in expanding leaves that developed during a drought period, indicating an increased long-term water use efficiency of these leaves.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 498 ◽  
Author(s):  
Moussa Tankari ◽  
Chao Wang ◽  
Ximei Zhang ◽  
Li Li ◽  
Rajesh Soothar ◽  
...  

Impact of soil water regimes on physiological responses and water use efficiency (WUE) for Vigna unguiculata L. Walp. (cowpea) inoculated with rhizobia still remains implicit. Therefore, the goal of the current study was to examine the leaf gas exchange, abscisic acid (ABA) and hydraulic signaling, WUE and carbon and oxygen isotopic compositions (δ13C and δ18O) of cowpea under different soil water levels. The treatments included soil water regimes at three levels (90%, 70%, and 50% of soil water holding capacity (SWHC)) and two inoculation forms (inoculated and non-inoculated with rhizobia). The results showed that across the inoculation treatments, reduced soil water regimes depressed both stomatal conductance (gs) and photosynthesis (An) of the leaves, nonetheless, the decrease of gs was more pronounced compared with the reduction in An. Consequently, the intrinsic water use efficiency (WUEi) was improved in the treatments under decreased soil water conditions. Plant WUE was also improved when soil water contents decreased as exemplified by the increased leaf δ13C and δ18O, indicating the enhanced plant WUE was mainly attributed to the decrease of gs. Significant interactions between soil water regimes and rhizobia treatments for root water potential (RWP), leaf water potential (LWP), and gs were found due to the different responses of rhizobia to varied soil water regimes. Inoculation could improve plant water status and gs under 70% and 90% SWHC compared to 50% SWHC with negative effect from rhizobia. A moderate soil water regime is suggested for cowpea production in terms of high WUE with a minor biomass reduction.


Sign in / Sign up

Export Citation Format

Share Document