scholarly journals Leaf Gas Exchange, Plant Water Relations and Water Use Efficiency of Vigna Unguiculata L. Walp. Inoculated with Rhizobia under Different Soil Water Regimes

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 498 ◽  
Author(s):  
Moussa Tankari ◽  
Chao Wang ◽  
Ximei Zhang ◽  
Li Li ◽  
Rajesh Soothar ◽  
...  

Impact of soil water regimes on physiological responses and water use efficiency (WUE) for Vigna unguiculata L. Walp. (cowpea) inoculated with rhizobia still remains implicit. Therefore, the goal of the current study was to examine the leaf gas exchange, abscisic acid (ABA) and hydraulic signaling, WUE and carbon and oxygen isotopic compositions (δ13C and δ18O) of cowpea under different soil water levels. The treatments included soil water regimes at three levels (90%, 70%, and 50% of soil water holding capacity (SWHC)) and two inoculation forms (inoculated and non-inoculated with rhizobia). The results showed that across the inoculation treatments, reduced soil water regimes depressed both stomatal conductance (gs) and photosynthesis (An) of the leaves, nonetheless, the decrease of gs was more pronounced compared with the reduction in An. Consequently, the intrinsic water use efficiency (WUEi) was improved in the treatments under decreased soil water conditions. Plant WUE was also improved when soil water contents decreased as exemplified by the increased leaf δ13C and δ18O, indicating the enhanced plant WUE was mainly attributed to the decrease of gs. Significant interactions between soil water regimes and rhizobia treatments for root water potential (RWP), leaf water potential (LWP), and gs were found due to the different responses of rhizobia to varied soil water regimes. Inoculation could improve plant water status and gs under 70% and 90% SWHC compared to 50% SWHC with negative effect from rhizobia. A moderate soil water regime is suggested for cowpea production in terms of high WUE with a minor biomass reduction.

2012 ◽  
Vol 5 (3) ◽  
pp. 653-668 ◽  
Author(s):  
Christine E. Edwards ◽  
Brent E. Ewers ◽  
C. Robertson McClung ◽  
Ping Lou ◽  
Cynthia Weinig

2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Li ◽  
Dagang Guo ◽  
Xiaodong Gao ◽  
Xining Zhao

Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (Pn) and transpiration rates (Tr) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased Pn and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased Pn by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced Pn by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of Pn and Tr, whereas a water deficit induced increase in WUE was linked to the decrease in Tr. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.


1995 ◽  
Vol 22 (3) ◽  
pp. 461 ◽  
Author(s):  
J Vadell ◽  
C Cabot ◽  
H Medrano

The effects of drought acclimation on the diurnal time courses of photosynthesis and related characters were studied in Trifolium subterraneum L. leaves during two consecutive late spring days. Leaf CO2 assimilation rate and transpiration rate followed irradiance variations in irrigated plants. Under drought, a bimodal pattern of leaf CO2 assimilation rate developed although stomatal conductance remained uniform and low. Instantaneous water-use efficiency was much higher in droughted plants during the early morning and late evening, while during the middle of the day it was close to the value of irrigated plants. Net carbon gain in plants under drought reached 40% of the carbon gain in irrigated plants with a significant saving of water (80%). Average data derived from midday values of leaf CO2 assimilation rates and instantaneous water-use efficiency did not provide good estimates of the daily carbon gain and water-use efficiency for droughted leaves. Coupled with the morphological changes as a result of acclimation to progressive drought, modifications of diurnal patterns of leaf gas exchange rates effectively contribute to a sustained carbon gain during drought. These modifications significantly improve water-use efficiency, mainly by enabling the plant to take advantage of morning and evening hours with high air humidity.


2012 ◽  
Vol 169 (4) ◽  
pp. 379-386 ◽  
Author(s):  
Antonio Diaz-Espejo ◽  
María Victoria Cuevas ◽  
Miquel Ribas-Carbo ◽  
Jaume Flexas ◽  
Sebastian Martorell ◽  
...  

1980 ◽  
Vol 10 (3) ◽  
pp. 429-435 ◽  
Author(s):  
R. Ceulemans ◽  
I. Impens

Different ecophysiological characteristics of various Populus clones (maximum net CO2 uptake rate, apparent quantum yield, photon flux density compensation point, boundary layer resistance, and stomatal and internal resistances to carbon dioxide and water use efficiency) were studied using a gas exchange method. Most significant differences were found in the water use efficiency ratios, the internal resistances to carbon dioxide and the maximum net CO2 uptake rates. Recently selected interamerican Populustrichocarpa crossings (Populus clones Unal, Beaupré, and Trichobel) showed high water use efficiency, high maximum net CO2 uptake rates, and low internal resistances.


Sign in / Sign up

Export Citation Format

Share Document