scholarly journals Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network

2005 ◽  
Vol 131 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Markus Tiemann ◽  
Carsten Schrader ◽  
Wolfram Klapper ◽  
Martin H. Dreyling ◽  
Elias Campo ◽  
...  
Leukemia ◽  
2004 ◽  
Vol 18 (7) ◽  
pp. 1200-1206 ◽  
Author(s):  
C Schrader ◽  
P Meusers ◽  
G Brittinger ◽  
A Teymoortash ◽  
J-U Siebmann ◽  
...  

Leukemia ◽  
2006 ◽  
Vol 20 (10) ◽  
pp. 1905-1908 ◽  
Author(s):  
D Hui ◽  
L Dabbagh ◽  
J Hanson ◽  
H M Amin ◽  
R Lai

2019 ◽  
Vol Volume 11 ◽  
pp. 10215-10221 ◽  
Author(s):  
Mei Mei ◽  
Yingjun Wang ◽  
Qilong Wang ◽  
Yueyao Liu ◽  
Wenting Song ◽  
...  

Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1421-1429 ◽  
Author(s):  
German Ott ◽  
Jörg Kalla ◽  
M. Michaela Ott ◽  
Birgit Schryen ◽  
Tiemo Katzenberger ◽  
...  

Abstract Sixty-four cases of mantle cell (centrocytic) non-Hodgkin's lymphomas have been analyzed for their cytomorphologic features, proliferation indices, bcl-1 rearrangements, p53 expression patterns, and DNA content by both interphase cytogenetic and DNA flow cytometric analyses. According to cytomorphology, three subtypes were recognized: a common, a lymphoblastoid, and a pleomorphic variant of mantle cell lymphoma (MCL). Blastoid MCL subtypes were characterized by distinctly elevated mitotic counts (57 and 51/10 HPF v 21/10 high-power fields in common MCL), proliferation indices (58% and 53% v 27% in common types, respectively; P < .001), frequent bcl-1 rearrangements at the major translocation cluster locus (59% v 40%), and overexpression of p53 (21% v 6%). However, the most interesting finding was a striking tendency of blastoid MCL subtypes to harbor chromosome numbers in the tetraploid range (36% of lymphoblastoid and 80% of pleomorphic types v 8% of common variants, P < .001), a feature clearly separating these neoplasms from other types of B-cell non-Hodgkin's lymphoma and possibly being related to cyclin D1 overexpression. Our data indicate that, although characterized by a uniform immunophenotype and common biologic background, MCL shows a broad spectrum of morphologic features ranging from small cell to blastoid types and that the morphologic spectrum is mirrored by distinct biologic features.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3622-3622
Author(s):  
Warren Fiskus ◽  
Yongchao Wang ◽  
Anand Jillella ◽  
Pace Johnston ◽  
Rajeshree Joshi ◽  
...  

Abstract Lysine specific histone methylation and deacetylation and DNA hypermethylation are involved in the epigenetic silencing of tumor suppressor genes (TSG), e.g., p16 and JunB. The multi-protein complex PRC (polycomb repressive complex) 2 that contains the three core proteins EZH2, SUZ12 and EED, has intrinsic histone methyltransferase (HMTase) activity. This is mediated by the SET domain of EZH2, which induces tri-methylation (3Me) of lysine (K)-27 on histone H3, as well as promotes cell proliferation and aggressiveness of neoplastic cells. EZH2 is preferentially overexpressed in proliferating but not resting Mantle Cell Lymphoma (MCL) cells. In the present studies we demonstrate that treatment with the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep) dose-dependently (500 nM to 2.0 uM) depletes EZH2, SUZ12 and EED levels, as well as inhibits 3Me K27 on H3 while inducing K27 H3 acetylation. DZNep treatment also induces the levels of p21, p27, JunB and FBXO32, while depleting cyclin D1 and cyclin E levels in the cultured human MCL Jeko-1, MO2058 and Z138 cells and in primary patient-derived MCL cells. Treatment with DZNep induces PARP cleavage activity of the caspases and apoptosis in the cultured and primary MCL cells. DZNep promoted proteasomal degradation of EZH2 and SUZ12, since co-treatment with bortezpmib significantly restored EZH2 and SUZ12 levels in the MCL cells. We had previously reported that treatment with the pan-histone deacetylase (HDAC) inhibitor panobinostat (PS) (LBH589, Novartis Pharmaceutical Corp) depletes the levels of EZH2, SUZ12 and EED in cultured and primary AML cells (Mol Cancer Ther.2006; 5:3096). Within the PRC2 complex, EZH2 bound and recruited the DNA methyltransferases DNMT1, and treatment with PS also disrupted the interaction of EZH2 with DNMT1, attenuated DNMT1 levels and its binding to the EZH2-targeted gene promoters, e,g, JunB. Here, we also demonstrate that, PS treatment depletes DNMT1 levels and induces JunB levels in cultured MCL cells. As compared to treatment with either agent alone, co-treatment with DZNep and PS caused more depletion of EZH2 and SUZ12, but not of DNMT1, more induction of JunB, p21 and p27, as well as synergistically induced apoptosis of cultured MCL cells (combination indices < 1.0). Taken together, these findings indicate that DZNep and PS mediated targeting of EZH2 and the PRC2 complex is an effective epigenetic therapy of MCL, which also results in undermining several molecular determinants of MCL cell proliferation and survival. Additionally, combined epigenetic therapy with DZNep and PS exerts synergistic in vitro activity against human MCL cells, suggesting that this combination may be a promising novel treatment for MCL.


1997 ◽  
Vol 99 (4) ◽  
pp. 842-847 ◽  
Author(s):  
E. Vandenberghe ◽  
C. De Wolf-Peeters ◽  
G. Vaughan Hudson ◽  
B. Vaughan Hudson ◽  
S. Pittaluga ◽  
...  

2005 ◽  
Vol 448 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Carsten Schrader ◽  
Peter Meusers ◽  
Günter Brittinger ◽  
Dirk Janssen ◽  
Afshin Teymoortash ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4100-4100
Author(s):  
Junya Kuroda ◽  
Taku Tsukamoto ◽  
Shingo Nakahata ◽  
Kazuhiro Morishita ◽  
Ryuichi Sato ◽  
...  

Abstract Mantle cell lymphoma (MCL) has been mostly incurable, and there is an urgent need to identify targetable molecules for development of a more effective treatment strategy. Bromodomain and extraterminal domain (BET) proteins associate with acetylated histones and facilitate transcription of target genes, and bromodomain-containing 4 (BRD4), a member of BET proteins, recruits the P-TEFb complex to genomic lesions in chromatin and thereby activates RNA Pol II at specific promoter sites of target genes. In addition, super-enhancers have been recognized as regulatory regions with a high level of acetylated histones, mediator complexes and BRD4, and super-enhancers in cancer cells are enriched at oncogenes. Recent studies have shown that BRD4 promotes expression of pivotal molecules in disease development, maintenance and progression in various cancers, including lymphoma. Given, we in this study examined the effect of BRD4 inhibition on human MCL-derived cell lines, Jeko-1, JVM-2, MINO and Z138, and performed broad screening of BRD4-regulated molecules using genome-wide approaches to identify therapeutic targets for MCL. As the results, treatment with a BRD4 inhibitor I-BET151 for 72 h showed a dose-dependent inhibitory effect on cell proliferation in all four cell lines, with half maximal inhibitory concentrations (IC50s) of 15.6 nM, 3.6 nM, 2.6 nM and 3.0 nM in Jeko-1 cells, JVM2 cells, MINO cells and Z138 cells, respectively, which was accompanied by G1/S cell cycle arrest and the induction of apoptosis. Next, we performed comprehensive gene expression profile (GEP) analysis for JVM2 and Z138 cells with or without I-BET151 treatment, and BRD4 chromatin immunoprecipitation sequencing (ChIP-Seq) in JVM2 cells treated with 10 nM I-BET151 or DMSO. Accordingly, GEP analyses revealed that more than 600 genes were commonly upregulated by more than 1.5-fold and downregulated by less than 0.67-fold, respectively, in JVM2 and Z138 cells treated by I-BET151, while ChIP-Seq showed that 7988 BRD4-binding regions were dysregulated by I-BET151, with most of these sites in enhancer regions, and 547 BRD4-binding regions were characterized as super-enhancers. Integrated analysis using the Reactome Pathway Database and the results of GEP and ChIP-Seq showed that a series of genes involved in the B cell receptor (BCR) signaling pathway and IKZF-MYC axis are regulated by BRD4 in MCL cells. To confirm whether each BRD4 target contributes to survival and proliferation of MCL cells, we focused on several candidate targets: the BCR pathway, IKZF and MYB. However, ibrutinib, a Bruton kinase inhibitor, suppressed cell growth in only two of the four cell lines (MINO and JVM2) in a dose-dependent manner, while lenalidomide, an inhibitor of the IKZF family, did not affect cell survival, despite its potency in decreasing IKZF1 and IKZF3 proteins. MYB silencing using shMYB did not decrease cell proliferation in any of the four MCL cell lines. In conclusion, our study disclosed that BRD4 regulates transcription of multiple genes by binding to enhancer region, partly involving super-enhancers and multiple known pathways, such as BCR signaling and the IKZF-MYC axis, which play essential roles in survival of MCL cells. While the efficacy of single targeting of BCR-signaling, IKZF, or MYB was limited, I-BET151 concomitantly inactivated the BCR pathway and IKZF and had a high growth inhibitory efficacy in MCL cells. These results suggest that simultaneous targeting of multiple molecules involved in the BCR pathway and IKZF-MYC axis may overcome resistance to ibrutinib and/or lenalidomide in MCL, and that BRD4 inhibitors are promising candidates for MCL treatment. Disclosures Kuroda: Chugai Pharma: Honoraria, Research Funding. Taniwaki:Bristol-Myers Squibb: Research Funding; Chugai Pharmaceutical Co., Ltd.,: Research Funding; Astellas Pharma Inc,: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document