Transforming growth factor-alpha expression in in situ epidermal neoplasia

1995 ◽  
Vol 20 (3) ◽  
pp. 208-212 ◽  
Author(s):  
J.J.H. GRANT ◽  
G. HOWES ◽  
P.H. MCKEE
1988 ◽  
Vol 66 (8) ◽  
pp. 1113-1121 ◽  
Author(s):  
V. K. M. Han ◽  
A. J. D'Ercole ◽  
D. C. Lee

Transforming growth factors (TGFs) are polypeptides that are produced by transformed and tumour cells, and that can confer phenotypic properties associated with transformation on normal cells in culture. One of these growth-regulating molecules, transforming growth factor alpha (TGF-α), is a 50 amino acid polypeptide that is related to epidermal growth factor (EGF) and binds to the EGF receptor. Previous studies have shown that TGF-α is expressed during rodent embryogenesis between 7 and 14 days gestation. To investigate the cellular sites of TGF-α mRNA expression during development, we have performed Northern analyses and in situ hybridization histochemistry on the conceptus and maternal tissues at various gestational ages. Contrary to previous reports, both Northern analyses and in situ hybridization histochemistry indicate that TGF-α mRNA is predominantly expressed in the maternal decidua and not in the embryo. Decidual expression is induced following implantation, peaks at day 8, and declines through day 15 when the decidua is being resorbed. In situ hybridization revealed that expression of TGF-α mRNA is highest in the region of decidua adjacent to the embryo and is low or nondetectable in the uterus, placenta, and embryo. In addition, we could not detect TGF-α mRNA expression in other maternal tissues, indicating that the induction of TGF-α transcripts in the decidua is tissue specific, and not a pleiotropic response to changes in hormonal milieu that occur during pregnancy. The developmentally regulated expression of TGF-α mRNA in the decidua, together with the presence of EGF receptors in this tissue, suggests that this peptide may stimulate mitosis and angiogenesis locally by an autocrine mechanism. Because EGF receptors are also present in the embryo and placenta, TGF-α may act on these tissues by a paracrine or endocrine mechanism.


1990 ◽  
Vol 172 (3) ◽  
pp. 673-681 ◽  
Author(s):  
D T Wong ◽  
P F Weller ◽  
S J Galli ◽  
A Elovic ◽  
T H Rand ◽  
...  

Transforming growth factor alpha (TGF-alpha) is a pleuripotential cytokine with diverse biological effects, including the ability to influence the proliferation of normal cells or neoplastic epithelial cells. Eosinophils are a subset of granulocytes that normally enter the peripheral tissues, particularly those beneath gastrointestinal, respiratory, and urogenital epithelium, where they reside in close proximity to the epithelial elements. In this study, we demonstrate that the great majority of eosinophils infiltrating the interstitial tissues adjacent to two colonic adenocarcinomas and two oral squamous cell carcinomas labeled specifically by in situ hybridization with a 35S-riboprobe for human TGF-alpha (hTGF-alpha). No other identifiable leukocytes in these lesions contained detectable hTGF-alpha mRNA. We also examined leukocytes purified from a patient with the idiopathic hypereosinophilic syndrome. 80% of these eosinophils, but none of the patient's neutrophils or mononuclear cells, were positive for hTGF-alpha mRNA by in situ hybridization, and 55% of these eosinophils were positive by immunohistochemistry with a monoclonal antibody directed against the COOH terminus of the mature hTGF-alpha peptide. Finally, the identification of the purified eosinophil-associated transcript as hTGF-alpha was confirmed by polymerase chain reaction product restriction enzyme analysis followed by Southern blot hybridization. In contrast to eosinophils from the patient with hypereosinophilic syndrome, the peripheral blood eosinophils from only two of seven normal donors had detectable TGF-alpha mRNA and none of these eosinophils contained immunohistochemically detectable TGF-alpha product. Taken together, these findings establish that human eosinophils can express TGF-alpha, but suggest that the expression of TGF-alpha by eosinophils may be under microenvironmental regulation. Demonstration of TGF-alpha production by tissue-infiltrating eosinophils and the eosinophils in the hypereosinophilic syndrome identifies a novel mechanism by which eosinophils might contribute to physiological, immunological, and pathological responses.


2008 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
Tom Appleton ◽  
Shirine Usmani ◽  
John Mort ◽  
Frank Beier

Background: Articular cartilage degeneration is a hallmark of osteoarthritis (OA). We previously identified increased expression of transforming growth factor alpha (TGF?) and chemokine (C-C motif) ligand 2 (CCL2) in articular cartilage from a rat modelof OA (1,2). We subsequently reported that TGF? signalling modified chondrocyte cytoskeletal organization, increased catabolic and decreased anabolic gene expression and suppressed Sox9. Due to other roles in chondrocytes, we hypothesized that the effects ofTGF? on chondrocytes are mediated by Rho/ROCK and MEK/ERK signaling pathways. Methods: Primary cultures of chondrocytes and articularosteochondral explants were treated with pharmacological inhibitors of MEK1/2(U0126), ROCK (Y27632), Rho (C3), p38 MAPK (SB202190) and PI3K (LY294002) to elucidate pathway involvement. Results: Using G-LISA we determined that stimulation of primary chondrocytes with TGF? activates RhoA. Reciprocally, inhibition of RhoA/ROCK but not other signalling pathways prevents modification of the actin cytoskeleton in responseto TGF?. Inhibition of MEK/ERKsignaling rescued suppression of anabolic gene expression by TGF? including SOX9 mRNA and protein levels. Inhibition of MEK/ERK, Rho/ROCK, p38 MAPK and PI3K signalling pathways differentially controlled the induction of MMP13 and TNF? gene expression. TGF? also induced expression of CCL2 specifically through MEK/ERK activation. In turn, CCL2 treatment induced the expression of MMP3 and TNF?. Finally, we assessed cartilage degradation by immunohistochemical detection of type II collagen cleavage fragments generated by MMPs. Blockade of RhoA/ROCK and MEK/ERK signalling pathways reduced the generation of type IIcollagen cleavage fragments in response to TGF? stimulation. Conclusions: Rho/ROCK signalling mediates TGF?-induced changes inchondrocyte morphology, while MEK/ERK signalling mediates the suppression ofSox9 and its target genes, and CCL2 expression. CCL2, in turn, induces the expression of MMP3 and TNF?, two potent catabolic factors known to be involved in OA. These pathways may represent strategic targets for interventional approaches to treating cartilage degeneration in osteoarthritis. References: 1. Appleton CTG et al. Arthritis Rheum 2007;56:1854-68. 2. Appleton CTG et al. Arthritis Rheum 2007; 56:3693-705.


2012 ◽  
Vol 29 (6) ◽  
pp. 539-548 ◽  
Author(s):  
Nevin Çelebi ◽  
Gülay Yetkin ◽  
Çiğdem Özer ◽  
Alp Can ◽  
Nahide Gökçora

Sign in / Sign up

Export Citation Format

Share Document