scholarly journals Dynamic Rupture Processes On A Dipping Fault, and Estimates of Stress Drop and Strength Excess From the Results of Waveform Inversion

1993 ◽  
Vol 112 (3) ◽  
pp. 481-496 ◽  
Author(s):  
Takeshi Mikumo ◽  
Takashi Miyatake
1994 ◽  
Vol 37 (6) ◽  
Author(s):  
T. Mikumo

Several attempts have been made recently to infer the dynamic rupture processes of moderate-size earthquakes from kinematic waveform inversion and dynamic crack inversion. These studies have revealed a quite heterogeneous distribution of dynamic stress drop and relative fault strength over the fault for most earthquakes. In two strike-slip California earthquakes, negative stress drop has been identified in a shallow section of the fault, suggesting the possible existence of a zone of velocity-strengthening frictions. The dynamic models yielded quite short rise times comparable to those inferred from kinematic modelling of observed waveforms. The short slip durations for these earthquakes may probably be attributed to shorter length scale of fault segmentation due to the heterogeneities of shear stress and fault strength.


2021 ◽  
Vol 228 (1) ◽  
pp. 134-146
Author(s):  
Jian Wen ◽  
Jiankuan Xu ◽  
Xiaofei Chen

SUMMARY The stress drop is an important dynamic source parameter for understanding the physics of source processes. The estimation of stress drops for moderate and small earthquakes is based on measurements of the corner frequency ${f_c}$, the seismic moment ${M_0}$ and a specific theoretical model of rupture behaviour. To date, several theoretical rupture models have been used. However, different models cause considerable differences in the estimated stress drop, even in an idealized scenario of circular earthquake rupture. Moreover, most of these models are either kinematic or quasi-dynamic models. Compared with previous models, we use the boundary integral equation method to simulate spontaneous dynamic rupture in a homogeneous elastic full space and then investigate the relations between the corner frequency, seismic moment and source dynamic parameters. Spontaneous ruptures include two states: runaway ruptures, in which the rupture does not stop without a barrier, and self-arresting ruptures, in which the rupture can stop itself after nucleation. The scaling relationships between ${f_c}$, ${M_0}$ and the dynamic parameters for runaway ruptures are different from those for self-arresting ruptures. There are obvious boundaries in those scaling relations that distinguish runaway ruptures from self-arresting ruptures. Because the stress drop varies during the rupture and the rupture shape is not circular, Eshelby's analytical solution may be inaccurate for spontaneous dynamic ruptures. For runaway ruptures, the relations between the corner frequency and dynamic parameters coincide with those in the previous kinematic or quasi-dynamic models. For self-arresting ruptures, the scaling relationships are opposite to those for runaway ruptures. Moreover, the relation between ${f_c}$ and ${M_0}$ for a spontaneous dynamic rupture depends on three factors: the dynamic rupture state, the background stress and the nucleation zone size. The scaling between ${f_c}$ and ${M_0}$ is ${f_c} \propto {M_0^{ - n}}$, where n is larger than 0. Earthquakes with the same dimensionless dynamic parameters but different nucleation zone sizes are self-similar and follow a ${f_c} \propto {M_0^{ - 1/3}}$ scaling law. However, if the nucleation zone size does not change, the relation between ${f_c}$ and ${M_0}$ shows a clear departure from self-similarity due to the rupture state or background stress.


Author(s):  
Percy Galvez ◽  
Anatoly Petukhin ◽  
Paul Somerville ◽  
Jean-Paul Ampuero ◽  
Ken Miyakoshi ◽  
...  

ABSTRACT Realistic dynamic rupture modeling validated by observed earthquakes is necessary for estimating parameters that are poorly resolved by seismic source inversion, such as stress drop, rupture velocity, and slip rate function. Source inversions using forward dynamic modeling are increasingly used to obtain earthquake rupture models. In this study, to generate a large number of physically self-consistent rupture models, rupture process of which is consistent with the spatiotemporal heterogeneity of stress produced by previous earthquakes on the same fault, we use multicycle simulations under the rate and state (RS) friction law. We adopt a one-way coupling from multicycle simulations to dynamic rupture simulations; the quasidynamic solver QDYN is used to nucleate the seismic events and the spectral element dynamic solver SPECFEM3D to resolve their rupture process. To simulate realistic seismicity, with a wide range of magnitudes and irregular recurrence, several realizations of 2D-correlated heterogeneous random distributions of characteristic weakening distance (Dc) in RS friction are tested. Other important parameters are the normal stress, which controls the stress drop and rupture velocity during an earthquake, and the maximum value of Dc, which controls rupture velocity but not stress drop. We perform a parametric study on a vertical planar fault and generate a set of a hundred spontaneous rupture models in a wide magnitude range (Mw 5.5–7.4). We validate the rupture models by comparison of source scaling, ground motion (GM), and surface slip properties to observations. We compare the source-scaling relations between rupture area, average slip, and seismic moment of the modeled events with empirical ones derived from source inversions. Near-fault GMs are computed from the source models. Their peak ground velocities and peak ground accelerations agree well with the ground-motion prediction equation values. We also obtain good agreement of the surface fault displacements with observed values.


2019 ◽  
Author(s):  
C. Willacy ◽  
P. Van den Bogert ◽  
E. Van Dedem ◽  
J. Blokland

2020 ◽  
Vol 110 (6) ◽  
pp. 2599-2618
Author(s):  
Sirena Ulloa ◽  
Julian C. Lozos

ABSTRACT Thrust-fault earthquakes are particularly hazardous in that they produce stronger ground motion than normal or strike-slip events of the same magnitude due to a combination of hanging-wall effects, vertical asymmetry, and higher stress drop due to compression. In addition, vertical surface displacement occurs in both blind-thrust and emergent thrust ruptures, and can potentially damage lifelines and infrastructure. Our 3D dynamic rupture modeling parameter study focuses on planar thrust faults of varying dip angles, and burial depth establishes a physics-based understanding of how ground motion and permanent ground surface displacement depend on these geometrical parameters. We vary dip angles from 20° to 70° and burial depths from 0 to 5 km. We conduct rupture models on these geometries embedded in a homogeneous half-space, using different stress drops but fixed frictional parameters, and with homogeneous initial stresses versus stresses tapered toward the ground surface. Ground motions decrease as we bury the fault under homogeneous initial stresses. In contrast, under tapered initial stresses, ground motions increase in blind-thrust faults as we bury the fault, but are still the highest in emergent faults. As we steepen dip angle, peak particle velocities in the homogeneous stress case generally increase in emergent faults but decrease in blind-thrust faults. Meanwhile, ground motion consistently increases with steepening dip angle under the stress gradient. We find that varying stress drop has a considerable scalar effect on both ground motion and permanent surface displacement, whereas changing fault strength has a negligible effect. Because of the simple geometry of a planar fault, our results can be applied to understanding basic behavior of specific real-world thrust faults.


2020 ◽  
Author(s):  
Seok Goo Song ◽  
Chang Soo Cho ◽  
Geoffrey Ely

<p>An M 5.4 earthquake occurred in the southeastern part of the Korean Peninsula in 2017. It is an oblique thrust event that occurred at a relatively shallow depth (~ 5 km) although it did not create coseismic surface rupture. A coseismic slip model was successfully obtained by inverting the ground displacement field extracted by the InSAR data (Song and Lee, 2019). In this study, we performed spontaneous dynamic rupture modeling using the slip weakening friction law. The static stress drop distribution obtained by the coseismic slip model was used as an input stress field. We adopted high performance computing (HPC) using the parallelized dynamic rupture modeling code (SORD, Support Operator Rupture Dynamics). Although our target event is moderate-sized one, we can successfully produce a spontaneous dynamic rupture model using a relatively small initial nucleation patch (radius ~ 1 km) with a relatively small slip weakening distance (~ 5 cm). Our preliminary results show that the rupture creates an asperity near the initial nucleation zone with approximately 4 MPa stress drop, then propagates obliquely upward both in the northeast and southwest directions. Although we assumed a single planar fault plane in our current rupture modeling, it seems worthwhile to dynamically model the rupture process, including complex fault geometry in following studies. Dynamic rupture modeling for a natural earthquake provides an opportunity to understand the dynamic rupture characteristics of the earthquake, including both stress drop and fracture energy.</p>


2005 ◽  
Vol 32 (14) ◽  
pp. n/a-n/a ◽  
Author(s):  
Takumi Yasuda ◽  
Yuji Yagi ◽  
Takeshi Mikumo ◽  
Takashi Miyatake

Sign in / Sign up

Export Citation Format

Share Document