scholarly journals A practical implementation of wave front construction for 3-D isotropic media

2008 ◽  
Vol 173 (3) ◽  
pp. 1030-1038 ◽  
Author(s):  
K. Chambers ◽  
J.-M. Kendall
2013 ◽  
Vol 5 (04) ◽  
pp. 494-509 ◽  
Author(s):  
Yunqing Huang ◽  
Jichun Li ◽  
Yanping Lin

AbstractIn this paper, the time-dependent Maxwell’s equations used to modeling wave propagation in dispersive lossy bi-isotropic media are investigated. Existence and uniqueness of the modeling equations are proved. Two fully discrete finite element schemes are proposed, and their practical implementation and stability are discussed.


2009 ◽  
Vol 6 (3) ◽  
pp. 248-258 ◽  
Author(s):  
Fuxing Han ◽  
Jianguo Sun ◽  
Zhangqing Sun ◽  
Hao Yang

2007 ◽  
Vol 15 (1) ◽  
Author(s):  
G. Zakharyan ◽  
A. Galstyan

AbstractThe coupled wave theory of Raman and Nath diffraction is extended to the case of thin anisotropic holographic media with grating vector parallel to the medium boundaries. Solutions for the wave amplitudes, diffraction efficiencies, and angular mismatch sensitivities are given in transmission geometries for the case of mixed dielectric and absorption modulations. For an apparent distinction, the results are given only for dielectric modulation. The main difference of the new results, with respect to the expressions valid for isotropic media, arises due to the walk-off between the wave-front and energy propagation directions. The difference is particularly important in materials with large birefringence, such as organic crystals, ordered polymers, and liquid crystalline cells.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 164
Author(s):  
Neda Meshksar ◽  
Moritz Mehmet ◽  
Katharina-Sophie Isleif ◽  
Gerhard Heinzel

We propose to combine differential wave-front sensing (DWS) and differential power sensing (DPS) in a Mach-Zehnder type interferometer for measuring the rotational dynamics of a test-mass. Using the DWS method, a high sensitive measurement of 6 nrad Hz−1/2 in sub-Hz frequencies can be provided around the test-mass nominal position (±0.11 mrad), whereas the measurement of a wide rotation range (±5 mrad) is realized by the DPS method. The interferometer can be combined with deep frequency modulation (DFM) interferometry for measurement of the test-mass translational dynamics. The setup and the resulting interferometric signals are verified by simulations. An optimization algorithm is applied to find suitable positions of the lenses and the waist size of the input laser in order to determine the best trade of between the slope of DWS, dynamic range of DPS, and the interferometric contrast. Our simulation further allows to investigate the layout for robustness and design tolerances. We compare our device with a recent experimental realization of a DFM interferometer and find that a practical implementation of the interferometer proposed here has the potential to provide translational and rotational test-mass tracking with state-of-the-art sensitivity. The simple and compact design, and especially the capability of sensing the test-mass rotation in a wide range and simultaneously providing a high-precision measurement close to the test-mass nominal position makes the design especially suitable for example for employment in torsion pendulum setups.


Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Author(s):  
C. C. Ahn ◽  
S. Karnes ◽  
M. Lvovsky ◽  
C. M. Garland ◽  
H. A. Atwater ◽  
...  

The bane of CCD imaging systems for transmission electron microscopy at intermediate and high voltages has been their relatively poor modulation transfer function (MTF), or line pair resolution. The problem originates primarily with the phosphor screen. On the one hand, screens should be thick so that as many incident electrons as possible are converted to photons, yielding a high detective quantum efficiency(DQE). The MTF diminishes as a function of scintillator thickness however, and to some extent as a function of fluorescence within the scintillator substrates. Fan has noted that the use of a thin layer of phosphor beneath a self supporting 2μ, thick Al substrate might provide the most appropriate compromise for high DQE and MTF in transmission electron microcscopes which operate at higher voltages. Monte Carlo simulations of high energy electron trajectories reveal that only little beam broadening occurs within this thickness of Al film. Consequently, the MTF is limited predominantly by broadening within the thin phosphor underlayer. There are difficulties however, in the practical implementation of this design, associated mostly with the mechanical stability of the Al support film.


Sign in / Sign up

Export Citation Format

Share Document