scholarly journals Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code

2011 ◽  
Vol 187 (2) ◽  
pp. 929-945 ◽  
Author(s):  
Marco Pilz ◽  
Stefano Parolai ◽  
Marco Stupazzini ◽  
Roberto Paolucci ◽  
Jochen Zschau
2001 ◽  
Vol 09 (04) ◽  
pp. 1561-1581 ◽  
Author(s):  
ENRICO PRIOLO

The application of the 2-D Chebyshev spectral element method (SPEM) to engineering seismology problems is reviewed in this paper. The SPEM is a high-order finite element technique which solves the variational formulation of the seismic wave propagation equations. The computational domain is discretised into an unstructured grid composed by irregular quadrilateral elements. This property makes the SPEM particularly suitable to compute numerically accurate solutions of the full wave equations in complex media. The earthquake is simulated following an approach that can be considered "global", that is all the factors influencing the wave propagation — source, crustal heterogeneity, fine details of the near-surface structure, and topography — are taken into account and solved simultaneously. The basic earthquake source is represented by a 2-D point double couple model. Ruptures propagating along fault segments placed on the model plane are simulated as a finite summation of elementary point sources. After a general introduction, the paper first gives an overview of the method; then it concentrates on some methodological topics of interest for practical applications, such as quadrangular mesh generation, source definition and scaling, numerical accuracy and computational efficiency. Limitations and advantages of using a 2-D approach, although sophisticated such as the SPEM, are addressed, as well. The effectiveness of the method is illustrated through two case histories, i.e. the ground shaking prediction in Catania (Sicily, Italy) for a catastrophic earthquake, and the analysis of the ground motion in the presence of a massive structure.


2017 ◽  
Vol 50 (3) ◽  
pp. 1433
Author(s):  
C. Smerzini ◽  
K. Pitilakis ◽  
K. Hashemi

This study aims at showing the numerical modelling of earthquake ground motion in the Thessaloniki urban area, using a 3D spectral element approach. The availability of detailed geotechnical/geophysical data together with the seismological information regarding the relevant fault sources allowed us to construct a large-scale 3D numerical model suitable for generating physics based ground shaking scenarios within the city of Thessaloniki up to maximum frequencies of about 2 Hz. Results of the numerical simulation of the destructive MW6.5 1978 Volvi earthquake are addressed, showing that realistic estimates can be obtained. Shaking maps in terms of ground motion parameters such as PGV are used to discuss the main seismic wave propagation effects at a wide scale.


2019 ◽  
Vol 35 (4) ◽  
pp. 1845-1864 ◽  
Author(s):  
Nenad Bijelić ◽  
Ting Lin ◽  
Gregory G. Deierlein

This paper examines the effects of earthquake ground motions in deep sedimentary basins on structural collapse risk using physics-based earthquake simulations of the Los Angeles basin developed through the Southern California Earthquake Center's CyberShake project. Distinctive waveform characteristics of deep basin seismograms are used to classify the ground motions into several archetype groups, and the damaging influence of the basin effects are evaluated by comparing nonlinear structural responses under spectrum and significant duration equivalent basin and nonbasin ground motions. The deep basin ground motions are observed to have longer period-dependent durations and larger sustained spectral intensities than nonbasin motions for vibration periods longer than about 1.5 s, which can increase structural collapse risk by up to 20% in ground motions with otherwise comparable peak spectral accelerations and significant durations. Two new metrics are proposed to quantify period-dependent duration effects that are not otherwise captured by conventional ground motion intensity measures. The proposed sustained amplitude response spectra and significant duration spectra show promise for characterizing the damaging effects of long duration features of basin ground motions on buildings and other structures.


2021 ◽  
Vol 141 ◽  
pp. 106490
Author(s):  
Peyman Ayoubi ◽  
Kami Mohammadi ◽  
Domniki Asimaki

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Piotr Adam Bońkowski ◽  
Juliusz Kuś ◽  
Zbigniew Zembaty

AbstractRecent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.


Sign in / Sign up

Export Citation Format

Share Document