AN EXAMPLE OF THE IMPORTANCE OF NATURAL REMANENT MAGNETIZATION IN THE INTERPRETATION OF MAGNETIC ANOMALIES

1960 ◽  
Vol 8 (3) ◽  
pp. 474-483 ◽  
Author(s):  
R. W. GIRDLER ◽  
G. PETER
Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. J85-J98
Author(s):  
Shuang Liu ◽  
Xiangyun Hu ◽  
Dalian Zhang ◽  
Bangshun Wei ◽  
Meixia Geng ◽  
...  

Natural remanent magnetization acts as a record of the previous orientations of the earth’s magnetic field, and it is an important feature when studying geologic phenomena. The so-called IDQ curve is used to describe the relationship between the inclination ( I) and declination ( D) of remanent magnetization and the Köenigsberger ratio ( Q). Here, we construct the IDQ curve using data on ground and airborne magnetic anomalies. The curve is devised using modified approaches for estimating the total magnetization direction, e.g., identifying the maximal position of minimal reduced-to-the-pole fields or identifying correlations between total and vertical reduced-to-the-pole field gradients. The method is tested using synthetic data, and the results indicate that the IDQ curve can provide valuable information on the remanent magnetization direction based on available data on the Köenigsberger ratio. Then, the method is used to interpret field data from the Yeshan region in eastern China, where ground anomalies have been produced by igneous rocks, including diorite and basalt, which occur along with magnetite and hematite ore bodies. The IDQ curves for 24 subanomalies are constructed, and these curves indicate two main distribution clusters of remanent magnetization directions corresponding to different structural units of magma intrusion and help identify the lithologies of the magnetic sources in areas covered by Quaternary sediments. The estimated remanent magnetization directions for Cenozoic basalt are consistent with measurements made in paleomagnetism studies. The synthetic and field data indicate that the IDQ curve can be used to efficiently estimate the remanent magnetization direction from a magnetic anomaly, which could help with our understanding of geologic processes in an area.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Tao Yang ◽  
Jintian Gao ◽  
Zuowen Gu ◽  
Baatarkhuu Dagva ◽  
Batsaikhan Tserenpil

Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.


2020 ◽  
Author(s):  
Puy Ayarza ◽  
Juan José Villalaín ◽  
Jose Ramón Martínez Catalán ◽  
Fernando Alvarez Lobato ◽  
Manuela Durán Oreja ◽  
...  

<p><span lang="EN-US">The Eastern Galicia Magnetic Anomaly (EGMA) is one of the most conspicuous and, definitively, the best studied of all the magnetic anomalies in the Central Iberian Arc (CIA). This is probably due to its location, on the thoroughly researched Lugo-Sanabria gneiss dome and to the unique fact that its source rocks crop out in the Xistral Tectonic Window. Multiple studies and models of this anomaly have been carried out in the last 25 years and still, new results keep on shedding more light on its understanding. Rock magnetic analyses, natural remanent magnetization, anisotropy of the magnetic susceptibility and stable isotopes geochemistry carried out on the rocks that produce this anomaly have provided new insights on the processes that led to magnetization and on its age. Results suggest that magnetization of source rocks is a consequence of the increase in oxygen fugacity underwent by metamorphic and magmatic rocks affected by late-Variscan extensional tectonics. Extensional detachments were the pathways that allowed the entrance of fluids that led to syn-tectonic crystallization of magnetite and hematite in S-Type granites. Accordingly, magnetization is not really linked to primary lithologies but mostly to extensional structures. This process took place in the late Carboniferous to earliest Permian, during the Kiaman reverse superchron. Natural remanent magnetization exhibited by hematite-bearing samples confirms the age of the magnetization and adds complexity to the interpretation of the EGMA, where remanence has been often largely ignored or underestimated. Understanding the origin of the EGMA contributes to the interpretation of other anomalies existing in the CIA, also located on thermal domes. Furthermore, it provides new hints to interpret magnetic anomalies located in extensional tectonic contexts worldwide</span></p>


1970 ◽  
Vol 7 (2) ◽  
pp. 239-256 ◽  
Author(s):  
C. M. Carmichael

Measurements of the magnetic properties, paleomagnetic field intensity, and the inferred paleomagnetic field polarity have been made using fine grained basalt and coarser grained rock samples dredged from the mid-Atlantic ridge near 45° N and supplied by the Geological Survey of Canada. The opaque mineralogy of the samples was studied by microscope, Curie point, and X-ray diffraction techniques. The natural remanent magnetization of the basalt is of the order of 5 to 10 × 10−3 e.m.u./cm3 with some values from the center of the median valley reaching 10−1 e.m.u./cm3. Magnetic anomalies over the ridge can be accounted for by the remanent magnetization of a few hundred meters of this basalt. The coarse grained rocks were relatively weakly magnetized, and while they contribute little to the magnetic anomalies, their diverse character suggests that the major portion of the oceanic crust, below a thin veneer of fine grained basalt, has differentiated into a complex structure.


2021 ◽  
Author(s):  
Douglas P. Steen ◽  
Joseph S. Stoner ◽  
Jason P. Briner ◽  
Darrell S. Kaufman

Abstract. Two > 5-m-long sediment cores from Cascade Lake (68.38° N, 154.60° W), Arctic Alaska, were analyzed to quantify their paleomagnetic properties over the past 21,000 years. Alternating-field demagnetization of the natural remanent magnetization, anhysteretic remanent magnetization, isothermal remanent magnetization, and hysteresis experiments reveal a strong, well-defined characteristic remanent magnetization carried by a low coercivity magnetic component that increases up core. Maximum angular deviation values average < 2°, and average inclination values are within 4° of the geocentric axial dipole prediction. Radiometric ages based on 210Pb and 14C were used to correlate the major inclination features of the resulting paleomagnetic secular variation (PSV) record with those of other regional PSV records, including two geomagnetic field models and the longer series from Burial Lake, located 200 km to the west. Following around 6 ka (cal BP), the ages of PSV fluctuations in Cascade Lake begin to diverge from those of the regional records, reaching a maximum offset of about 2000 years at around 4 ka. Several correlated cryptotephra ages from this section (reported in a companion paper by Davies et al., this volume) support the regional PSV-based chronology and indicate that some of the 14C ages at Cascade Lake are variably too old.


Sign in / Sign up

Export Citation Format

Share Document