REPLY TO COMMENTS BY I. R. QURESHI ON "TWO-DIMENSIONAL MASS DISTRIBUTIONS FROM GRAVITY ANOMALIES: A COMPUTER METHOD"*

1976 ◽  
Vol 24 (2) ◽  
pp. 401-401
Author(s):  
D. J. JIN
Geophysics ◽  
1966 ◽  
Vol 31 (2) ◽  
pp. 372-397 ◽  
Author(s):  
L. P. Geldart ◽  
Denis E. Gill ◽  
Bijon Sharma

A simplified formula is given for the gravity effect of a horizontal semi‐infinite block truncated by a dipping plane. This formula is used to obtain curves illustrating the gravity anomalies for blocks having different thicknesses and depths truncated by planes dipping at various angles. By combining two blocks, results are obtained for faulted horizontal beds for a wide range of bed thicknesses and depths, fault displacements and dips. These should be useful as guides in interpreting fault anomalies, and in planning gravity programs intended to map faults. The most striking feature of the curves is the marked effect of the dip of the fault plane on the curves for faulted beds. The asymmetry of the fault curves is related mainly to the dip and can be used to determine dips between 30 and 90 degrees. If the dip of the fault, density contrast, and bed thickness are known, the depths to the bed on the two sides of the fault are given by the sizes and positions of the gravity maximum and minimum.


2008 ◽  
Vol 17 (01) ◽  
pp. 81-88 ◽  
Author(s):  
A. DOBROWOLSKI ◽  
H. GOUTTE ◽  
J.-F. BERGER

A dynamical approach to the neutron-induced fission of 255,257 Fm isotopes based on the time-dependent generator-coordinate method is applied. As the generating functions the eigensolutions of the constrained Hartree-Fock-Bogoliubov method with the effective D1S Gogny force are used. The here presented collective-dynamics calculations in the two-dimensional collective space described by quadrupole and octupole moments allow to determine the fragment mass distributions of those two Fm isotopes.


1964 ◽  
Vol 5 (38) ◽  
pp. 255-257 ◽  
Author(s):  
Charles E. Corbató

AbstractEquations and a graph are presented for calculating gravity anomalies on a two-dimensional glacier model having a horizontal upper boundary and a lower boundary which is a parabola with a vertical axis of symmetry.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Harald Pasch ◽  
Kibret Mequanint ◽  
Adrian Jörg

AbstractPoly(styrene-block-methyl methacrylate)s were fully analyzed by liquid chromatography at the critical point of adsorption (LC-CC) and two-dimensional chromatography. Operating at chromatographic conditions corresponding to the critical points of the homopolymers polystyrene and poly(methyl methacrylate), the block lengths distributions for the different blocks of the block copolymers were determined quantitatively. Information on the amounts and molar mass distributions of homopolymers and coupling products that were identified in the samples as by-products was obtained by on-line coupled 2D chromatography. It was shown that a complete picture of the molecular heterogeneity of block copolymers can be obtained only when information from different chromatographic experiments is combined. Size exclusion chromatography alone is inappropriate for evaluating the molecular heterogeneity of such samples.


Geophysics ◽  
1965 ◽  
Vol 30 (2) ◽  
pp. 228-233 ◽  
Author(s):  
Charles E. Corbató

A procedure suitable for use on high‐speed digital computers is presented for interpreting two‐dimensional gravity anomalies. In order to determine the shape of a disturbing mass with known density contrast, an initial model is assumed and gravity anomalies are calculated and compared with observed values at n points, where n is greater than the number of unknown variables (e.g. depths) of the model. Adjustments are then made to the model by a least‐squares approximation which uses the partial derivatives of the anomalies so that the residuals are reduced to a minimum. In comparison with other iterative techniques, convergence is very rapid. A convenient method to use for both the calculation of the anomalies and the adjustments is the two‐dimensional method of Talwani, Worzel, and Landisman, (1959) in which the outline of the body is polygonized and the anomalies and the partial derivatives of the anomaly with respect to the depth of a vertex on the body can be expressed as functions of the coordinates of the vertex. Not only depths but under certain circumstances regional gravity values may be evaluated; however, the relationship of the disturbing body to the gravity information may impose certain limitations on the application of the procedure.


Sign in / Sign up

Export Citation Format

Share Document