scholarly journals Two-dimensional chromatography of complex polymers. 3. Full analysis of polystyrene-poly(methyl methacrylate) diblock copolymers

e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Harald Pasch ◽  
Kibret Mequanint ◽  
Adrian Jörg

AbstractPoly(styrene-block-methyl methacrylate)s were fully analyzed by liquid chromatography at the critical point of adsorption (LC-CC) and two-dimensional chromatography. Operating at chromatographic conditions corresponding to the critical points of the homopolymers polystyrene and poly(methyl methacrylate), the block lengths distributions for the different blocks of the block copolymers were determined quantitatively. Information on the amounts and molar mass distributions of homopolymers and coupling products that were identified in the samples as by-products was obtained by on-line coupled 2D chromatography. It was shown that a complete picture of the molecular heterogeneity of block copolymers can be obtained only when information from different chromatographic experiments is combined. Size exclusion chromatography alone is inappropriate for evaluating the molecular heterogeneity of such samples.

2007 ◽  
Vol 60 (6) ◽  
pp. 400 ◽  
Author(s):  
Patricia L. Golas ◽  
Nicolay V. Tsarevsky ◽  
Brent S. Sumerlin ◽  
Lynn M. Walker ◽  
Krzysztof Matyjaszewski

Multisegmented block copolymers were prepared by the step-growth click coupling of well-defined block copolymers synthesized by atom transfer radical polymerization (ATRP). α,ω-Diazido-terminated polystyrene-block-poly(ethylene oxide)-block-polystyrene was coupled with propargyl ether in N,N-dimethylformamide in the presence of a CuBr/N,N,N´,N´´,N´´-pentamethyldiethylenetriamine catalyst. The preparation of multisegmented block copolymers was also demonstrated by the click coupling of propargyl ether with another diazido-terminated triblock copolymer, poly(n-butyl acrylate)-block-poly(methyl methacrylate)-block-poly(n-butyl acrylate), and a diazido-terminated pentablock copolymer, polystyrene-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-polystyrene. The formation of a product of higher molecular weight and broader molecular weight distribution was verified by triple-detection size exclusion chromatography, which revealed that typically five to seven block copolymers were linked together during the click reaction. Differential scanning calorimetry and dynamic mechanical analysis revealed that the amphiphilic block copolymer behaves as a viscoelastic fluid, while its corresponding multiblock copolymer is an elastic material. The multisegmented block copolymers with partially miscible segments exhibit higher glass transition temperatures than their precursors.


Sign in / Sign up

Export Citation Format

Share Document