Competition between white clover (Trifolium repens L.) and subterranean clover (Trifolium subterraneum L.) in binary mixtures in the field

1990 ◽  
Vol 45 (4) ◽  
pp. 373-382 ◽  
Author(s):  
M. J. HILL ◽  
A. C. GLEESON
1963 ◽  
Vol 3 (8) ◽  
pp. 35 ◽  
Author(s):  
VR Squires

Three herbicides, 2,2- DPA (2,2-dichloropropzonzc acid), diquat dibromide (9, l0-dihydro-8a, 10a-dizonia phenanthrene dibromide) and paraqmt di (methyl sulphate) (1,l-dimethl-4,4,-bipryridylium di (methyl sulphate) ) were tested with a view to controlling barley grass (Hordeum leporinum Link) in clover pastures. The tolerance of white clover (Trifolium repens L.) and subterranean clover (T. subterraneum L.) to sodium 2,2-DPA was determined. 2,2-DPA caused severe damage to subterranean clover (resulting in the loss of one season's production) and slight damage to white clover at a rate which controlled the grass-2 lb an acre acid equivalents. Diquat dibromide applied at 2 lb an acre (active cation) in mid winter gave complete control of barley grass in a subterranean clover pasture. Springfields of clover on treated plots were double those of the unseated control. Paraquat di (methyl sulphate) gave satisfactory control of barley, grass at 0.5 lb an acre, as an early post emergence spray, with no increase in subterranean clover yields, At the 1 lb an acre rate barley grass control was complete.


1972 ◽  
Vol 12 (57) ◽  
pp. 355 ◽  
Author(s):  
KFM Reed

August-born Corriedale lambs were weaned at ten weeks old and, for the following 12 months, were grazed on 16 plots. Each plot had been sown six years previously, to one of eight pasture mixtures which differed in their grass component, but not in their clover component. Trifolium perenne, Phalaris tuberosa, Dacylis glomerata, Trifolium repens, T . subterraneum, and T. fragiferum were sown. Hordem leporinum volunteered in most plots. Where perennial grass species were sown, Trifolium repens (white clover) contributed less than two per cent to the pasture present on the plots. For the two plots where perennial grass was not sown, white clover contributed up to 31 per cent. The total for all sown clover species present in the pasture varied from approximately 100 to 1000 kg ha-1, or approximately 3-30 per cent. Apart from the two plots where perennial qrass was not sown, the clover species present was mainly Trifolium subterraneum (subterranean clover). Average fleece weights varied from 3.1-4.9 kg on the different plots. The amount of sown clover present in the pasture accounted for 77 per cent of the between-plot variation in fleece weight and 66 per cent of the between-plot variation in annual liveweight gain. Measurements of pasture growth were made for four pasture mixtures. Total pasture growth showed differences of over 50 per cent due to pasture mixture, yet, when grazed at 20 weaners per hectare, differences in annual liveweight gain and fleece weight (10 months wool), due to pasture mixture, did not exceed 10 per cent. Annual liveweight gain and fleece weight were not correlated total pasture growth. However, pasture growth rate measured at monthly intervals, accounted for 43 per cent of the variation in mean daily liveweight gain during these individual months.


1998 ◽  
Vol 49 (4) ◽  
pp. 723 ◽  
Author(s):  
M. R. Norton ◽  
G. R. Johnstone

The levels of infection with 4 viruses in young white clover (Trifolium repens L.) plots sown in 1991 or 1992 were monitored at a total of 17 sites across the 6 States of Australia. Tests were undertaken for alfalfa mosaic (AMV), clover yellow vein (ClYVV), subterranean clover red leaf (SCRLV) (syn. soybean dwarf), and white clover mosaic (WClMV) viruses on field samples of 17 different cultivars, plus a local naturalised ecotype at each location, twice yearly over 3 years. The tests were undertaken using double antibody sandwich enzyme-linked immunosorbent assay (DASELISA). AMV and WClMV were the most common and widespread viruses. They infected plants atmany sites soon after establishment and then rapidly increased to high levels, occasionally exceeding 90% of plants. In contrast, at some sites, no infection with these viruses was detected. Analysis of the infection data at 4 sites, where significant spread of AMV occurred, indicated that the epidemics developed like compound interest models. Tests for SCRLV were done only in 1994 when moderate levels of infection were found at most southern, winter-rainfall dominant sites. The occurrence o fClYVV was sporadic and infection levels were always low.


2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.


Plant Science ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Elizabeth S. Jones ◽  
Leonie J. Hughes ◽  
Michelle C. Drayton ◽  
Michael T. Abberton ◽  
Terry P.T. Michaelson-Yeates ◽  
...  

2007 ◽  
Vol 277 (4) ◽  
pp. 413-425 ◽  
Author(s):  
N. O. I. Cogan ◽  
M. C. Drayton ◽  
R. C. Ponting ◽  
A. C. Vecchies ◽  
N. R. Bannan ◽  
...  

1988 ◽  
Vol 110 (1) ◽  
pp. 145-154 ◽  
Author(s):  
R. Cook ◽  
D. R. Evans

SummaryThe expression of symptoms of stem nematode reproduction on a total of 53 white clovers (26 cultivars, 14 genepools and 13 introductions from plant collections) was studied in a series of field and glasshouse experiments. Seedlings or stolon-tip cuttings were inoculated with nematodes and the clovers classified by the proportion of plants which developed symptoms. Significant differences were found between varieties although in each test the majority was intermediate between more resistant and susceptible extremes. There was significant positive correlation between tests, in spite of different inoculation methods and different average levels of susceptibility. Very large-leaved cv. Aran was more resistant than most other clovers tested, and small-leaved cv. S. 184 was more susceptible. There was no general correlation of leaf size with reaction to stemnematode. Small-leaved cv. Pronitro was also resistant while several large-leaved cultivars were susceptible. In observations of plants exposed to nematodes over a long period, either by sequential inoculations or through perpetuating latent infections, apparently resistant plants eventually succumbed and supported nematode reproduction. It has not been determined whether this was because selection for virulence in the nematodes had occurred.


Genomics ◽  
2018 ◽  
Vol 110 (3) ◽  
pp. 191-200 ◽  
Author(s):  
Heshan Zhang ◽  
Hong Tian ◽  
Mingxin Chen ◽  
Junbo Xiong ◽  
Hua Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document