von Willebrand factor/factor VIII concentrate (Humate-P) for management of elective surgery in adults and children with von Willebrand disease

Haemophilia ◽  
2011 ◽  
Vol 17 (6) ◽  
pp. 895-905 ◽  
Author(s):  
J. C. GILL ◽  
A. SHAPIRO ◽  
L. A. VALENTINO ◽  
J. BERNSTEIN ◽  
C. FRIEDMAN ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4076-4076 ◽  
Author(s):  
Jonathan Bernstein ◽  
Joan Cox Gill ◽  
Cindy A. Leissinger ◽  
Jorge Di Paola ◽  
Margaret V. Ragni ◽  
...  

Abstract The safety, efficacy, and optimal dosing of a von Willebrand Factor/Factor VIII concentrate (Humate-P®) were evaluated in an open-label, uncontrolled study in patients with von Willebrand disease (VWD) undergoing elective surgery. During an initial pharmacokinetic (PK) phase, a detailed profile of FVIII:C, VWF:RCo, and VWF:AG was obtained for each patient after an infusion of 60 IU VWF:RCo/kg as Humate-P. Individual PK values were used to calculate subsequent loading and maintenance doses. Hemostatic efficacy was characterized using a 4-point scale (excellent, good, moderate/poor, or none) at several time points following surgery. Forty-two adults and children were enrolled in the study (17 VWD type 1; 6 type 2; 13 type 3; 6 type 2M), and 35 of these patients underwent a surgical procedure (classified as 3 oral, 7 minor, and 25 major). The median loading dose administered was 55.6 IU/kg (range 17.4 to 135.3 IU/kg). For patients with more severe VWD (baseline VWF:RCo<12 IU/dL), the median loading dose administered was 70.9 IU/kg (range 38.6 to 135.3 IU/kg). The dosing interval was 8 or 12 hours in most subjects (4 were dosed every 6 hours), and treatment duration ranged from 1 to 6 days depending on surgery type. Effective hemostasis (investigator- rated as “excellent” or “good”) was noted in 91.4% (32/35) of subjects immediately after surgery, 100% (35/35) of subjects 14 days after surgery, and 100% (34/34) of subjects evaluated 24 hours after the last infusion (primary endpoint). Mean blood loss was less than expected, and four patients required transfusions, related to their surgery. Only six adverse events were considered possibly treatment related: headache (3), itching, nausea, and dizziness (1). These results demonstrate that von Willebrand Factor/Factor VIII concentrate is safe and effective in the prevention of excessive bleeding during and after elective surgery in adult and pediatric patients with von Willebrand disease.


2018 ◽  
Vol 17 (1) ◽  
pp. 52-62 ◽  
Author(s):  
F. Peyvandi ◽  
A. Mamaev ◽  
J.‐D. Wang ◽  
O. Stasyshyn ◽  
M. Timofeeva ◽  
...  

2018 ◽  
Vol 475 (17) ◽  
pp. 2819-2830 ◽  
Author(s):  
Małgorzata A. Przeradzka ◽  
Henriet Meems ◽  
Carmen van der Zwaan ◽  
Eduard H.T.M. Ebberink ◽  
Maartje van den Biggelaar ◽  
...  

The D′–D3 fragment of von Willebrand factor (VWF) can be divided into TIL′-E′-VWD3-C8_3-TIL3-E3 subdomains of which TIL′-E′-VWD3 comprises the main factor VIII (FVIII)-binding region. Yet, von Willebrand disease (VWD) Type 2 Normandy (2N) mutations, associated with impaired FVIII interaction, have been identified in C8_3-TIL3-E3. We now assessed the role of the VWF (sub)domains for FVIII binding using isolated D′, D3 and monomeric C-terminal subdomain truncation variants of D′–D3. Competitive binding assays and surface plasmon resonance analysis revealed that D′ requires the presence of D3 for effective interaction with FVIII. The isolated D3 domain, however, did not show any FVIII binding. Results indicated that the E3 subdomain is dispensable for FVIII binding. Subsequent deletion of the other subdomains from D3 resulted in a progressive decrease in FVIII-binding affinity. Chemical footprinting mass spectrometry suggested increased conformational changes at the N-terminal side of D3 upon subsequent subdomain deletions at the C-terminal side of the D3. A D′–D3 variant with a VWD type 2N mutation in VWD3 (D879N) or C8_3 (C1060R) also revealed conformational changes in D3, which were proportional to a decrease in FVIII-binding affinity. A D′–D3 variant with a putative VWD type 2N mutation in the E3 subdomain (C1225G) showed, however, normal binding. This implies that the designation VWD type 2N is incorrect for this variant. Results together imply that a structurally intact D3 in D′–D3 is indispensable for effective interaction between D′ and FVIII explaining why specific mutations in D3 can impair FVIII binding.


Author(s):  
И.В. Куртов ◽  
Е.С. Фатенкова ◽  
Н.А. Юдина ◽  
А.М. Осадчук ◽  
И.Л. Давыдкин

Болезнь Виллебранда (БВ) может представлять определенные трудности у рожениц с данной патологией. Приведены 2 клинических примера использования у женщин с БВ фактора VIII свертывания крови с фактором Виллебранда, показана эффективность и безопасность их применения. У одной пациентки было также показано использование фактора свертывания крови VIII с фактором Виллебранда во время экстракорпорального оплодотворения. Von Willebrand disease presents a certain hemostatic problem among parturients. This article shows the effectiveness and safety of using coagulation factor VIII with von Willebrand factor for the prevention of bleeding in childbirth in 2 patients with type 3 von Willebrand disease. In one patient, the use of coagulation factor VIII with von Willebrand factor during in vitro fertilization was also shown.


Blood ◽  
1979 ◽  
Vol 54 (3) ◽  
pp. 600-606 ◽  
Author(s):  
D Meyer ◽  
D Frommel ◽  
MJ Larrieu ◽  
TS Zimmerman

Abstract A previously healthy elderly man with mucocutaneous bleeding was found to have a benign monoclonal IgG gammapathy associated with criteria for severe von Willebrand disease (Factor VIII procoagulant activity, Factor-VIII-related antigen, and ristocetin cofactor activity, less than 10% of normal). Associated qualitative abnormalities of factor VIII/von Willebrand factor were demonstrated by radiocrossed immunoelectrophoresis and immunoradiometric assay. The late clinical onset and negative family history are in favor of an acquired form of vWD. The monoclonal gammapathy and abnormalities of factor VIII/von Willebrand factor have been stable over a 10-yr period. No inhibitor to Factor VIII procoagulant activity, ristocetin cofactor activity, or Factor-VIII-related antigen could be demonstrated. Following transfusion of cryoprecipitate (with a normal cross immunoelectrophoretic pattern), there was a rapid removal of the large forms of Factor.-VIII-related antigen, paralleled by a decay of ristocetin cofactor activity. The transfusion study of this patient with acquired von Willebrand disease type II (variant of von Willebrand disease) serves to emphasize the relationship between polydispersity of Factor VIII/von Willebrand Factor and functional heterogeneity.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 563-567 ◽  
Author(s):  
S Jorieux ◽  
EA Tuley ◽  
C Gaucher ◽  
C Mazurier ◽  
JE Sadler

Abstract von Willebrand factor (vWF) and factor VIII (FVIII) circulate in plasma as a noncovalently linked protein complex. The FVIII/vWF interaction is required for the stabilization of procoagulant FVIII activity. Recently, we reported a new variant of von Willebrand disease (vWD) tentatively named “Normandy,” characterized by plasma vWF that appears to be structurally and functionally normal except that it does not bind FVIII. Three patients from one family were found to be homozygous for a C----T transition at codon 816 converting Arg 53 to Trp in the mature vWF subunit. To firmly establish a causal relationship between this missense mutation and vWD Normandy phenotype, we have characterized the corresponding recombinant mutant vWF(R53W). Expressed in COS-7 cells or CHO cell lines, normal vWF and vWF(R53W) were processed and formed multimers with equal efficiency. However, vWF(R53W) exhibited the same defect in FVIII binding as did plasma vWF from patients with vWD Normandy, confirming that this mutation is responsible for the vWD Normandy phenotype. These results illustrate the importance of Arg 53 of the mature vWF subunit for the binding of FVIII to vWF, and identify an amino acid residue within a disulfide loop not previously known to be involved in this interaction.


2009 ◽  
Vol 121 (2-3) ◽  
pp. 167-176 ◽  
Author(s):  
Jan Jacques Michiels ◽  
Huub H.D.M. van Vliet ◽  
Zwi Berneman ◽  
Wilfried Schroyens ◽  
Alain Gadisseur

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4028-4028
Author(s):  
Hong I. Tarng ◽  
Lynne Taylor ◽  
Barbara A. Konkle

Abstract A number of inherited and acquired factors modulate von Willebrand factor antigen (VWF:Ag) levels, including blood type, race, activity and stress level, thyroid hormone status, and, in women, time in menstrual cycle. In reported studies a positive correlation between VWF:Ag and/or factor VIII levels and age has been demonstrated, with an increase of 5 – 6 IU/dL per decade (Conlan MG et al, 1993; Kamphuisen PW et al, 1998). Those studies have primarily assessed VWF and factor VIII as risk factors for ischemic heart disease, cerebrovascular disease, and venous thromboembolism. None of the subjects had von Willebrand disease (VWD). Their VWF:Ag levels were in the higher normal or elevated range. The purpose of this study was to determine whether there is a relationship between age and VWF:Ag level in patients with Type 1 VWD. We collected the data from 36 patients who were diagnosed with type 1 VWD and followed at the Penn Comprehensive Hemophilia and Thrombosis Program up to a period of 13 years (See Table 1 below). For each patient, date of birth, VWF:Ag levels with corresponding test dates were collected by reviewing the medical histories and the lab results. Test results obtained during pregnancy, DDAVP testing, or during prophylaxis or therapy for bleeding control were excluded. One year was set as the observation period, so the adjacent VWF:Ag levels that were tested less than one year were excluded from the dataset. When two test results were available on a patient within a one-year period, the lower test result was used. To investigate whether there was a relationship between VWF:Ag levels and age, cross-sectional analyses (across each visit) and longitudinal analyses were performed using scatter plots, Spearman and Pearson correlations, and regression analysis. No significant increase in VWF:Ag levels with age was demonstrated. The fact that we did not find an increase in VWF:Ag levels over time in our patients could be due to the relatively small number of patients studied or could reflect a subtype of VWD, due to our selection criteria. Only patients with abnormal values were included. Some patients have a prior diagnosis of VWD and bleeding symptoms, but have normal values when tested. Since these patients are adults, this may be due, at least in part, to an age-related increase. Type 1 VWD may occur secondary to decreased VWF synthesis and/or clearance. It is possible that age-related effects on VWF levels will differ depending on the underlying factor(s) resulting in a lower VWF level. Further studies correlating a patient’s values longitudinally with the underlying pathophysiology of their disease would aid in our understanding of their bleeding risks over time. Patient # Age at Last Visit, range (mean) Females (%) Race % (Cauc/AA/Other) VWF:Ag mean 36 17–70 (34) 89 78/19/3 49%


Sign in / Sign up

Export Citation Format

Share Document