Evolution of biological dispersal corridors through a tectonically active mountain range in New Zealand

2008 ◽  
Vol 35 (10) ◽  
pp. 1790-1802 ◽  
Author(s):  
D. Craw ◽  
C. P. Burridge ◽  
P. Upton ◽  
D. L. Rowe ◽  
J. M. Waters
2021 ◽  
Author(s):  
◽  
Stephen John Stuart

<p>Precipitation in the central Southern Alps affects glaciation, river flows and key economic activities, yet there is still uncertainty about its spatial distribution and primary influences. Long-term and future patterns of New Zealand precipitation can be estimated by the HadRM3P regional climate model (RCM) - developed by the United Kingdom Met Office - but orographic rainfall in the steep and rugged topography of the Southern Alps is difficult to simulate accurately at the 30-km resolution of the RCM. To quantify empirical relationships, observations of surface rainfall were gathered from rain gauges covering a broad region of the South Island. In four transects of the Hokitika, Franz Josef and Haast regions, the mean annual precipitation maxima of objectively interpolated profiles are consistently located 7-11 km southeast of the New Zealand Alpine Fault. The magnitude and shape of the rainfall profile across the Southern Alps are strongly influenced by the 850-hPa wind direction to the north of the mountain range, as determined by comparing rain-gauge observations to wind vectors from NCEP/NCAR Reanalysis 1. The observed profile of orographically enhanced rainfall was incorporated into a trivariate spline in order to interpolate precipitation simulated by the RCM. This downscaling method significantly improved the RCM's estimates of mean annual rainfall at stations in the Southern Alps region from 1971 to 2000, and RCM projections of future rainfall in mountainous regions may be similarly refined via this technique. The improved understanding of the observed rainfall distribution in the Southern Alps, as gained from this analysis, has a range of other hydrological applications and is already being used in 'downstream' modelling of glaciers.</p>


2007 ◽  
Vol 197 (3-4) ◽  
pp. 333-354 ◽  
Author(s):  
Kate Wilson ◽  
Kelvin Berryman ◽  
Ursula Cochran ◽  
Tim Little

1999 ◽  
Vol 23 (4) ◽  
pp. 567-610 ◽  
Author(s):  
R. M. Newnham ◽  
D. J. Lowe ◽  
P. W. Williams

The discovery that orbital variations are the driving force behind Quaternary climate change provides an impetus to set local and regional records of environmental change into the global context, a principle that has been strongly embraced by Quaternary scientists working in New Zealand. Their major achievements and significant current initiatives are reviewed here. The importance of the New Zealand Quaternary stems from its geographical context: a climatically sensitive, remote oceanic, southern location spanning 17 degrees of the mid-latitudes; an obliquely convergent plate boundary setting resulting in a high mountain range athwart the prevailing westerlies, active volcanism, a youthful and dynamic landscape, and mountains high enough to maintain glaciers today; and a remarkably short prehistory. The resultant records show marked environmental changes due not only to climatic oscillations but also to vigorous, active tectonism and volcanism. The Taupo Volcanic Zone, containing the world's strongest concentration of youthful rhyolitic volcanoes, has produced at least 10 000 km3 of magma in the last 2 Ma. Climatic interpretations of records from marine sediments in the New Zealand region, together with several long sequences of alternating marine and terrestrial sediments, indicate broad synchrony with Northern Hemisphere events (within limitations of dating), although there are differences in detail for shorter-term climatic events. It is not yet certain that glacial advances coincided precisely with those in the Northern Hemisphere or were of similar duration. Late Cainozoic glaciation commenced c. 2.6-2.4 Ma but the record of glacial deposits is fragmentary and poorly dated except for the most recent events. The Last (Otira) Glaciation, from c. 100-10 ka, was characterized by at least five glacial advances including during the Last Glacial Maximum from 25 to 15 ka, when snowlines fell by 600-800 m. New Zealand evidence for cooling during the Younger Dryas stade is equivocal whilst isotopic records from speleothems, and other data, indicate warmer and wetter conditions from 10-7 ka, broadly conforming with records from mid-latitude Northern Hemisphere locations. Future advances will require sampling at shorter timescales, improvements in the accuracy and precision of existing dating methods and the development of new ones, extension of palaeoecological techniques to cover the full potential of new Zealand's diverse biota, and a stronger emphasis on quantification of palaeoclimatic parameters.


Author(s):  
Mike Searle

The Himalaya is the greatest mountain range on Earth: the highest, longest, youngest, the most tectonically active, and the most spectacular of all. Unimaginable geological forces created these spectacular peaks. Indeed, the crash of the Indian plate into Asia is the biggest known collision in geological history, giving birth to the Himalaya and Karakoram, one of the most remote and savage places on Earth. In this beautifully illustrated book, featuring spectacular color photographs throughout, one of the most experienced field geologists of our time presents a rich account of the geological forces that were involved in creating these monumental ranges. Over three decades, Mike Searle has transformed our understanding of this vast region. To gather his vital geological evidence, he has had to deploy his superb skills as a mountaineer, spending weeks at time in remote and dangerous locations. Searle weaves his own first-hand tales of discovery with an engaging explanation of the processes that formed these impressive peaks. His narrative roughly follows his career, from his early studies in the north west Himalaya of Ladakh, Zanskar and Kashmir, through several expeditions to the Karakoram ranges (including climbs on K2, Masherbrum, and the Trango Towers, and the crossing of Snow Lake, the world's largest ice cap outside polar regions), to his later explorations around Everest, Makalu, Sikkim and in Tibet and South East Asia. The book offers a fascinating first-hand account of a major geologist at work-the arduous labor, the eureka moments, and the days of sheer beauty, such as his trek to Kathmandu, over seven days through magnificent rhododendron forests ablaze in pinks, reds and white and through patches of bamboo jungle with hanging mosses. Filled with satellite images, aerial views, and the author's own photographs of expeditions, Colliding Continents offers a vivid account of the origins and present state of the greatest mountain range on Earth.


Soil Research ◽  
2002 ◽  
Vol 40 (2) ◽  
pp. 243 ◽  
Author(s):  
I. H. Lynn ◽  
L. R. Lilburne ◽  
P. D. McIntosh

We tested the accuracy of a soil–landscape model, previously developed using a very low sampling density, for predicting soil properties in the dry greywacke steeplands of the South Island, New Zealand. These deeply dissected steeplands have relatively uniform geology and slope form, and in the model development area, elevation and aspect largely controlled the soil pattern. Predicted and sampled values of selected soil properties were compared at randomly selected sites on the Benmore Range (the development area), the adjacent Kirkliston Range, and a similar mountain range on Molesworth Station, 250 km distant. Considering the harsh environmental conditions, parent material variability, management history, and vegetation change, none of which were directly included in the model, model performance was adequate, explaining up to 45&percnt; of the variability for 0–7.5 cm pH. The model did not consistently perform better at any one test location, although the mean absolute error increased with distance from the model establishment area for 0–7.5 cm &percnt;C, pH, and A-horizon total C and total N. Predictions were more accurate for properties based on one laboratory measurement. Where several field measurements were used to derive values (e.g. nutrient amounts in units of kg&sol;ha), predicted values were less accurate presumably because they incorporate more measurement error. We conclude that at a broad management scale, the model adequately predicts the soil properties on dominant landscape units. The model greatly improved prediction of soil values in national inventories (e.g. A-horizon C) and also has application in environmental risk prediction and economic development. landscape, mountain, soil map, soil carbon.


The Holocene ◽  
2010 ◽  
Vol 20 (3) ◽  
pp. 405-421 ◽  
Author(s):  
Bruce W. Hayward ◽  
Kate Wilson ◽  
Margaret S. Morley ◽  
Ursula Cochran ◽  
Hugh R. Grenfell ◽  
...  

Paleobiology ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 470-477 ◽  
Author(s):  
Tom M. Womack ◽  
James S. Crampton ◽  
Michael J. Hannah

AbstractQuantifying true patterns of biodiversity change over the Cenozoic has major implications for all of biology and paleontology but is still a source of significant debate. The problem centers on the magnitude and nature of several well-known sampling effects and analytical biases in the fossil record, including the Pull of the Recent. We test the effect of the Pull of the Recent at both generic and species levels on the exemplary New Zealand Cenozoic marine mollusk fossil record. We examine several biological traits of species to determine whether particular attributes of taxa control their likely presence or absence in the youngest fossil record (<2.4 Ma). We demonstrate that, for a tectonically active region, the Pull of the Recent does not exert a strong effect on apparent diversity patterns of genera and species over the Cenozoic at temporal scales typically used in global and regional biodiversity analyses. This result agrees with previous studies quantifying the effect of the Pull of the Recent in the marine and terrestrial realms at the genus level. The effect of the Pull of the Recent, although small, is greatest for the youngest fossil record (<2.4 Ma), particularly for species. This increase cannot easily be explained by effects related to shell mineralogical composition, size, habitat, taxonomic class, or lithification. The small effect that the Pull of the Recent exerts on the New Zealand molluscan fossil record implies that the apparent rise in regional marine diversity during the Cenozoic represents a true biological signal and/or reflects other confounding effects not considered here.


Sign in / Sign up

Export Citation Format

Share Document