A simple technique for the examination of urothelial surface morphology by transmission electron microscopy: platinum-carbon replicas of critical point dried bladder tissue

1980 ◽  
Vol 120 (1) ◽  
pp. 29-42 ◽  
Author(s):  
N. J. Severs
2004 ◽  
Vol 810 ◽  
Author(s):  
H.B. Yao ◽  
D.Z. Chi ◽  
S. Tripathy ◽  
S.Y. Chow ◽  
W.D. Wang ◽  
...  

ABSTRACTThe germanosilicidation of Ni on strained (001) Si0.8Ge0.2, particularly Ge segregation, grain boundary grooving, and surface morphology, during rapid thermal annealing (RTA) was studied. High-resolution cross-sectional transmission electron microscopy (HRXTEM) suggested that Ge-rich Si1−zGez segregation takes place preferentially at the germanosilicide/Si1−xGex interface, more specifically at the triple junctions between two adjacent NiSi1−uGeu grains and the underlying epi Si1−xGex, and it is accompanied with thermal grooving process. The segregation process accelerates the thermal grooving of NiSi1−uGeu grain boundaries at the interface. The segregation-accelerated grain boundary grooving has significant effect on the surface morphology of NiSi1−uGeu films in Ni-SiGe system.


Author(s):  
John H. L. Watson ◽  
Jessica Goodwin ◽  
E. Osborne Coates

Biopsies of lung were taken at operation from a patient with semi-acute diffuse pulmonary infiltrates for study by TEM and SEM. Tissue by light microscopy showed non-caseating granulomas consistent with sarcoidosis. Clinical evidence suggested a hypersensitivity reaction related to inhalation of substance of undetermined nature. Samples were fixed in glutaraldehyde, cacodylate-buffered. They were critical point dried and coated with Au-Pd for SEM, and were handled appropriately for TEM in Araldite. Sections were contrasted with uranyl acetate and lead citrate.


1987 ◽  
Vol 91 ◽  
Author(s):  
T. L. Lin ◽  
L. Sadwick ◽  
K. L. Wang ◽  
S. S. Rhee ◽  
Y. C Kao ◽  
...  

ABSTRACTGaAs layers have been grown on porous silicon (PS) substrates by molecular beam epitaxyNo surface morphology deterioration was observed onGaAs-on-PS layers in spite of the roughness of PS. A 10% Rutherford backscattering spectroscopy (RBS) channeling minimum yield for GaAs-on-PS layers as compared to 16% for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy (TEM) reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers.


Sign in / Sign up

Export Citation Format

Share Document