Characterization of intact subcellular bodies in whole bacteria by cryo-electron tomography and spectroscopic imaging

2006 ◽  
Vol 223 (1) ◽  
pp. 40-52 ◽  
Author(s):  
L. R. COMOLLI ◽  
M. KUNDMANN ◽  
K. H. DOWNING
Langmuir ◽  
2015 ◽  
Vol 31 (31) ◽  
pp. 8680-8688 ◽  
Author(s):  
Tara L. Fox ◽  
Saide Tang ◽  
Jonathan M. Horton ◽  
Heather A. Holdaway ◽  
Bin Zhao ◽  
...  

2015 ◽  
Vol 26 (2) ◽  
pp. 294-304 ◽  
Author(s):  
Toshiyuki Oda ◽  
Haruaki Yanagisawa ◽  
Masahide Kikkawa

The nexin-dynein regulatory complex (N-DRC) forms a cross-bridge between the outer doublet microtubules of the axoneme and regulates dynein motor activity in cilia/flagella. Although the molecular composition and the three-dimensional structure of N-DRC have been studied using mutant strains lacking N-DRC subunits, more accurate approaches are necessary to characterize the structure and function of N-DRC. In this study, we precisely localized DRC1, DRC2, and DRC4 using cryo–electron tomography and structural labeling. All three N-DRC subunits had elongated conformations and spanned the length of N-DRC. Furthermore, we purified N-DRC and characterized its microtubule-binding properties. Purified N-DRC bound to the microtubule and partially inhibited microtubule sliding driven by the outer dynein arms (ODAs). Of interest, microtubule sliding was observed even in the presence of fourfold molar excess of N-DRC relative to ODA. These results provide insights into the role of N-DRC in generating the beating motions of cilia/flagella.


2014 ◽  
Vol 20 (S3) ◽  
pp. 1256-1257 ◽  
Author(s):  
Joshua D. Strauss ◽  
Jason E. Hammonds ◽  
Paul W. Spearman ◽  
Elizabeth R. Wright

2020 ◽  
Vol 117 (33) ◽  
pp. 19713-19719 ◽  
Author(s):  
Caitlin E. Cornell ◽  
Alexander Mileant ◽  
Niket Thakkar ◽  
Kelly K. Lee ◽  
Sarah L. Keller

Images of micrometer-scale domains in lipid bilayers have provided the gold standard of model-free evidence to understand the domains' shapes, sizes, and distributions. Corresponding techniques to directly and quantitatively assess smaller (nanoscale and submicron) liquid domains have been limited. Researchers commonly seek to correlate activities of membrane proteins with attributes of the domains in which they reside; doing so hinges on identification and characterization of membrane domains. Although some features of membrane domains can be probed by indirect methods, these methods are often constrained by the limitation that data must be analyzed in the context of models that require multiple assumptions or parameters. Here, we address this challenge by developing and testing two methods of identifying submicron domains in biomimetic membranes. Both methods leverage cryo-electron tomograms of ternary membranes under vitrified, hydrated conditions. The first method is optimized for probe-free applications: Domains are directly distinguished from the surrounding membrane by their thickness. This technique quantitatively and accurately measures area fractions of domains, in excellent agreement with known phase diagrams. The second method is optimized for applications in which a single label is deployed for imaging membranes by both high-resolution cryo-electron tomography and diffraction-limited optical microscopy. For this method, we test a panel of probes, find that a trimeric mCherry label performs best, and specify criteria for developing future high-performance, dual-use probes. These developments have led to direct and quantitative imaging of submicron membrane domains in vitrified, hydrated vesicles.


2019 ◽  
Vol 516 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Qiang Chen ◽  
Xinrui Huang ◽  
Risheng Wei ◽  
Lei Zhang ◽  
Changcheng Yin

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sara Sheibani ◽  
Kaustuv Basu ◽  
Ali Farnudi ◽  
Aliakbar Ashkarran ◽  
Muneyoshi Ichikawa ◽  
...  

AbstractThe biological identity of nanoparticles (NPs) is established by their interactions with a wide range of biomolecules around their surfaces after exposure to biological media. Understanding the true nature of the biomolecular corona (BC) in its native state is, therefore, essential for its safe and efficient application in clinical settings. The fundamental challenge is to visualize the biomolecules within the corona and their relationship/association to the surface of the NPs. Using a synergistic application of cryo-electron microscopy, cryo-electron tomography, and three-dimensional reconstruction, we revealed the unique morphological details of the biomolecules and their distribution/association with the surface of polystyrene NPs at a nanoscale resolution. The analysis of the BC at a single NP level and its variability among NPs in the same sample, and the discovery of the presence of nonspecific biomolecules in plasma residues, enable more precise characterization of NPs, improving predictions of their safety and efficacies.


2016 ◽  
Vol 22 (S3) ◽  
pp. 80-81
Author(s):  
Bäuerlein FJB ◽  
Saha ◽  
A Mishra ◽  
I Dudanova ◽  
M Hipp ◽  
...  

2021 ◽  
Author(s):  
Qiu Yu Huang ◽  
Kangkang Song ◽  
Chen Xu ◽  
Daniel Bolon ◽  
Jennifer P. Wang ◽  
...  

Influenza viruses pose severe public health threats; they cause millions of infections and tens of thousands of deaths annually in the US. Influenza viruses are extensively pleomorphic, in both shape and size as well as organization of viral structural proteins. Analysis of influenza morphology and ultrastructure can help elucidate viral structure-function relationships as well as aid in therapeutics and vaccine development. While cryo-electron tomography (cryoET) can depict the 3D organization of pleomorphic influenza, the low signal-to-noise ratio inherent to cryoET and extensive viral heterogeneity have precluded detailed characterization of influenza viruses. In this report, we developed a cryoET processing pipeline leveraging convolutional neural networks (CNNs) to characterize the morphological architecture of the A/Puerto Rico/8/34 (H1N1) influenza strain. Our pipeline improved the throughput of cryoET analysis and accurately identified viral components within tomograms. Using this approach, we successfully characterized influenza viral morphology, glycoprotein density, and conduct subtomogram averaging of HA glycoproteins. Application of this processing pipeline can aid in the structural characterization of not only influenza viruses, but other pleomorphic viruses and infected cells.


Sign in / Sign up

Export Citation Format

Share Document