scholarly journals A Candida albicans cell wall-linked protein promotes invasive filamentation into semi-solid medium

2010 ◽  
Vol 76 (3) ◽  
pp. 733-748 ◽  
Author(s):  
Paola C. Zucchi ◽  
Talya R. Davis ◽  
Carol A. Kumamoto
2019 ◽  
Vol 8 (1) ◽  
pp. 48 ◽  
Author(s):  
Inês Correia ◽  
Daniel Prieto ◽  
Elvira Román ◽  
Duncan Wilson ◽  
Bernhard Hube ◽  
...  

Candida albicans is an important human fungal pathogen responsible for tens of millions of infections as well as hundreds of thousands of severe life-threatening infections each year. MAP kinase (MAPK) signal transduction pathways facilitate the sensing and adaptation to external stimuli and control the expression of key virulence factors such as the yeast-to-hypha transition, the biogenesis of the cell wall, and the interaction with the host. In the present study, we have combined molecular approaches and infection biology to analyse the role of C. albicans MAPK pathways during an epithelial invasion. Hog1 was found to be important for adhesion to abiotic surfaces but was dispensable for damage to epithelial cells. The Mkc1 cell wall integrity (CWI) and Cek1 pathways, on the other hand, were both required for oral epithelial damage. Analysis of the ability to penetrate nutrient-rich semi-solid media revealed a cooperative role for Cek1 and Mkc1 in this process. Finally, cek2Δ (as well as cek1Δ) but not mkc1Δ or hog1Δ mutants, exhibited elevated β-glucan unmasking as revealed by immunofluorescence studies. Therefore, the four MAPK pathways play distinct roles in adhesion, epithelial damage, invasion and cell wall remodelling that may contribute to the pathogenicity of C. albicans.


2002 ◽  
Vol 1 (3) ◽  
pp. 420-431 ◽  
Author(s):  
Ana B. Herrero ◽  
Daniela Uccelletti ◽  
Carlos B. Hirschberg ◽  
Angel Dominguez ◽  
Claudia Abeijon

ABSTRACT Cell wall mannoproteins are largely responsible for the adhesive properties and immunomodulation ability of the fungal pathogen Candida albicans. The outer chain extension of yeast mannoproteins occurs in the lumen of the Golgi apparatus. GDP-mannose must first be transported from the cytosol into the Golgi lumen, where mannose is transferred to mannans. GDP is hydrolyzed by a GDPase, encoded by GDA1, to GMP, which then exits the Golgi lumen in a coupled, equimolar exchange with cytosolic GDP-mannose. We isolated and disrupted the C. albicans homologue of the Saccharomyces cerevisiae GDA1 gene in order to investigate its role in protein mannosylation and pathogenesis. CaGda1p shares four apyrase conserved regions with other nucleoside diphosphatases. Membranes prepared from the C. albicans disrupted gda1/gda1 strain had a 90% decrease in the ability to hydrolyze GDP compared to wild type. The gda1/gda1 mutants showed a severe defect in O-mannosylation and reduced cell wall phosphate content. Other cell wall-related phenotypes are present, such as elevated chitin levels and increased susceptibility to attack by β-1,3-glucanases. Our results show that the C. albicans organism contains β-mannose at their nonreducing end, differing from S. cerevisiae, which has only α-linked mannose residues in its O-glycans. Mutants lacking both alleles of GDA1 grow at the same rate as the wild type but are partially blocked in hyphal formation in Lee solid medium and during induction in liquid by changes in temperature and pH. However, the mutants still form normal hyphae in the presence of serum and N-acetylglucosamine and do not change their adherence to HeLa cells. Taken together, our data are in agreement with the hypothesis that several pathways regulate the yeast-hypha transition. Gda1/gda1 cells offer a model for discriminating among them.


2020 ◽  
Vol 16 (1) ◽  
pp. 58-63
Author(s):  
Amrutha Vijayakumar ◽  
Ajith Madhavan ◽  
Chinchu Bose ◽  
Pandurangan Nanjan ◽  
Sindhu S. Kokkal ◽  
...  

Background: Chitin is the main component of fungal, protozoan and helminth cell wall. They help to maintain the structural and functional characteristics of these organisms. The chitin wall is dynamic and is repaired, rearranged and synthesized as the cells develop. Active synthesis can be noticed during cytokinesis, laying of primary septum, maintenance of lateral cell wall integrity and hyphal tip growth. Chitin synthesis involves coordinated action of two enzymes namely, chitin synthase (that lays new cell wall) and chitinase (that removes the older ones). Since chitin synthase is conserved in different eukaryotic microorganisms that can be a ‘soft target’ for inhibition with small molecules. When chitin synthase is inhibited, it leads to the loss of viability of cells owing to the self- disruption of the cell wall by existing chitinase. Methods: In the described study, small molecules from plant sources were screened for their ability to interfere with hyphal tip growth, by employing Hyphal Tip Burst assay (HTB). Aspergillus niger was used as the model organism. The specific role of these small molecules in interfering with chitin synthesis was established with an in-vitro method. The enzyme required was isolated from Aspergillus niger and its activity was deduced through a novel method involving non-radioactively labelled substrate. The activity of the potential lead molecules were also checked against Candida albicans and Caenorhabditis elegans. The latter was adopted as a surrogate for the pathogenic helminths as it shares similarity with regard to cell wall structure and biochemistry. Moreover, it is widely studied and the methodologies are well established. Results: Out of the 11 compounds and extracts screened, 8 were found to be prospective. They were also found to be effective against Candida albicans and Caenorhabditis elegans. Conclusion: Purified Methyl Ethyl Ketone (MEK) Fraction1 (F1) of Coconut (Cocos nucifera) Shell Extract (COSE) was found to be more effective against Candida albicans with an IC50 value of 3.04 μg/mL and on L4 stage of Caenorhabditis elegans with an IC50 of 77.8 μg/mL.


2019 ◽  
Vol 19 (4) ◽  
pp. 428-438 ◽  
Author(s):  
Nívea P. de Sá ◽  
Ana P. Pôssa ◽  
Pilar Perez ◽  
Jaqueline M.S. Ferreira ◽  
Nayara C. Fonseca ◽  
...  

<p>Background: The increasing incidence of invasive forms of candidiasis and resistance to antifungal therapy leads us to seek new and more effective antifungal compounds. </P><P> Objective: To investigate the antifungal activity and toxicity as well as to evaluate the potential targets of 2- cyclohexylidenhydrazo-4-phenyl-thiazole (CPT) in Candida albicans. </P><P> Methods: The antifungal activity of CPT against the survival of C. albicans was investigated in Caenorhabditis elegans. Additionally, we determined the effect of CPT on the inhibition of C. albicans adhesion capacity to buccal epithelial cells (BECs), the toxicity of CPT in mammalian cells, and the potential targets of CPT in C. albicans. </P><P> Results: CPT exhibited a minimum inhibitory concentration (MIC) value of 0.4-1.9 µg/mL. Furthermore, CPT at high concentrations (>60 x MIC) showed no or low toxicity in HepG2 cells and <1% haemolysis in human erythrocytes. In addition, CPT decreased the adhesion capacity of yeasts to the BECs and prolonged the survival of C. elegans infected with C. albicans. Analysis of CPT-treated cells showed that their cell wall was thinner than that of untreated cells, especially the glucan layer. We found that there was a significantly lower quantity of 1,3-β-D-glucan present in CPT-treated cells than that in untreated cells. Assays performed on several mutant strains showed that the MIC value of CPT was high for its antifungal activity on yeasts with defective 1,3-β-glucan synthase. </P><P> Conclusion: In conclusion, CPT appears to target the cell wall of C. albicans, exhibits low toxicity in mammalian cells, and prolongs the survival of C. elegans infected with C. albicans.</p>


Author(s):  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Gumieniczek ◽  
Maria Malm ◽  
Krzysztof Z. Łączkowski ◽  
...  

Abstract Recently, the occurrence of candidiasis has increased dramatically, especially in immunocompromised patients. Additionally, their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. A series of nine newly synthesized thiazole derivatives containing the cyclopropane system, showing promising activity against Candida spp., has been further investigated. We decided to verify their antifungal activity towards clinical Candida albicans isolated from the oral cavity of patients with hematological malignancies and investigate the mode of action on fungal cell, the effect of combination with the selected antimycotics, toxicity to erythrocytes, and lipophilicity. These studies were performed by the broth microdilution method, test with sorbitol and ergosterol, checkerboard technique, erythrocyte lysis assay, and reversed phase thin-layer chromatography, respectively. All derivatives showed very strong activity (similar and even higher than nystatin) against all C. albicans isolates with minimal inhibitory concentration (MIC) = 0.008–7.81 µg/mL Their mechanism of action may be related to action within the fungal cell wall structure and/or within the cell membrane. The interactions between the derivatives and the selected antimycotics (nystatin, chlorhexidine, and thymol) showed additive effect only in the case of combination some of them and thymol. The erythrocyte lysis assay confirmed the low cytotoxicity of these compounds as compared to nystatin. The high lipophilicity of the derivatives was related with their high antifungal activity. The present studies confirm that the studied thiazole derivatives containing the cyclopropane system appear to be a very promising group of compounds in treatment of infections caused by C. albicans. However, this requires further studies in vivo. Key points • The newly thiazoles showed high antifungal activity and some of them — additive effect in combination with thymol. • Their mode of action may be related with the influence on the structure of the fungal cell wall and/or the cell membrane. • The low cytotoxicity against erythrocytes and high lipophilicity of these derivatives are their additional good properties. Graphical abstract


2011 ◽  
Vol 7 (11) ◽  
pp. e1002384 ◽  
Author(s):  
Manimala Sen ◽  
Bhavin Shah ◽  
Srabanti Rakshit ◽  
Vijender Singh ◽  
Bhavna Padmanabhan ◽  
...  

2014 ◽  
Vol 82 (10) ◽  
pp. 4405-4413 ◽  
Author(s):  
Sarah E. Davis ◽  
Alex Hopke ◽  
Steven C. Minkin ◽  
Anthony E. Montedonico ◽  
Robert T. Wheeler ◽  
...  

ABSTRACTThe virulence ofCandida albicansin a mouse model of invasive candidiasis is dependent on the phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE). Disruption of the PS synthase geneCHO1(i.e.,cho1Δ/Δ) eliminates PS and blocks thede novopathway for PE biosynthesis. In addition, thecho1Δ/Δ mutant's ability to cause invasive disease is severely compromised. Thecho1Δ/Δ mutant also exhibits cell wall defects, and in this study, it was determined that loss of PS results in decreased masking of cell wall β(1-3)-glucan from the immune system. In wild-typeC. albicans, the outer mannan layer of the wall masks the inner layer of β(1-3)-glucan from exposure and detection by innate immune effector molecules like the C-type signaling lectin Dectin-1, which is found on macrophages, neutrophils, and dendritic cells. Thecho1Δ/Δ mutant exhibits increases in exposure of β(1-3)-glucan, which leads to greater binding by Dectin-1 in both yeast and hyphal forms. The unmasking of β(1-3)-glucan also results in increased elicitation of TNF-α from macrophages in a Dectin-1-dependent manner. The role of phospholipids in fungal pathogenesis is an emerging field, and this is the first study showing that loss of PS inC. albicansresults in decreased masking of β(1-3)-glucan, which may contribute to our understanding of fungus-host interactions.


Sign in / Sign up

Export Citation Format

Share Document