scholarly journals The history of mass assembly of faint red galaxies in 28 galaxy clusters since z =  1.3

2008 ◽  
Vol 386 (2) ◽  
pp. 1045-1052 ◽  
Author(s):  
S. Andreon
2020 ◽  
Vol 496 (4) ◽  
pp. 5139-5148
Author(s):  
Jenny G Sorce ◽  
Stefan Gottlöber ◽  
Gustavo Yepes

ABSTRACT Galaxy clusters can play a key role in modern cosmology, provided their evolution is properly understood. However, observed clusters give us only a single timeframe of their dynamical state. Therefore, finding present observable data of clusters that are well correlated to their assembly history constitutes an inestimable tool for cosmology. Former studies correlating environmental descriptors of clusters to their formation history are dominated by halo mass–environment relations. This paper presents a mass-free correlation between the present neighbour distribution of cluster-size haloes and the latter mass assembly history. From the Big Multidark simulation, we extract two large samples of random haloes with masses ranging from Virgo to Coma cluster sizes. Additionally, to find the main environmental culprit for the formation history of the Virgo cluster, we compare the Virgo-size haloes to 200 Virgo-like haloes extracted from simulations that resemble the local Universe. The number of neighbours at different cluster-centric distances permits discriminating between clusters with different mass accretion histories. Similarly to Virgo-like haloes, clusters with numerous neighbours within a distance of about two times their virial radius experience a transition at z ≈ 1 between an active period of mass accretion, relative to the mean, and a quiet history. In contrary, clusters with few neighbours share an opposite trend: from passive to active assembly histories. Additionally, clusters with massive companions within about four times their virial radius tend to have recent active merging histories. Therefore, the radial distribution of cluster neighbours provides invaluable insights into the past history of these objects.


2021 ◽  
Vol 503 (3) ◽  
pp. 3309-3325
Author(s):  
Sabine Bellstedt ◽  
Aaron S G Robotham ◽  
Simon P Driver ◽  
Jessica E Thorne ◽  
Luke J M Davies ◽  
...  

ABSTRACT We analyse the metallicity histories of ∼4500 galaxies from the GAMA survey at z < 0.06 modelled by the SED-fitting code ProSpect using an evolving metallicity implementation. These metallicity histories, in combination with the associated star formation histories, allow us to analyse the inferred gas-phase mass–metallicity relation. Furthermore, we extract the mass–metallicity relation at a sequence of epochs in cosmic history, to track the evolving mass–metallicity relation with time. Through comparison with observations of gas-phase metallicity over a large range of redshifts, we show that, remarkably, our forensic SED analysis has produced an evolving mass–metallicity relationship that is consistent with observations at all epochs. We additionally analyse the three-dimensional mass–metallicity–SFR space, showing that galaxies occupy a clearly defined plane. This plane is shown to be subtly evolving, displaying an increased tilt with time caused by general enrichment, and also the slowing down of star formation with cosmic time. This evolution is most apparent at lookback times greater than 7 Gyr. The trends in metallicity recovered in this work highlight that the evolving metallicity implementation used within the SED-fitting code ProSpect produces reasonable metallicity results over the history of a galaxy. This is expected to provide a significant improvement to the accuracy of the SED-fitting outputs.


2020 ◽  
Vol 493 (3) ◽  
pp. 4551-4569 ◽  
Author(s):  
Danail Obreschkow ◽  
Pascal J Elahi ◽  
Claudia del P Lagos ◽  
Rhys J J Poulton ◽  
Aaron D Ludlow

ABSTRACT Linking the properties of galaxies to the assembly history of their dark matter haloes is a central aim of galaxy evolution theory. This paper introduces a dimensionless parameter s ∈ [0, 1], the ‘tree entropy’, to parametrize the geometry of a halo’s entire mass assembly hierarchy, building on a generalization of Shannon’s information entropy. By construction, the minimum entropy (s = 0) corresponds to smoothly assembled haloes without any mergers. In contrast, the highest entropy (s = 1) represents haloes grown purely by equal-mass binary mergers. Using simulated merger trees extracted from the cosmological N-body simulation SURFS, we compute the natural distribution of s, a skewed bell curve peaking near s = 0.4. This distribution exhibits weak dependences on halo mass M and redshift z, which can be reduced to a single dependence on the relative peak height δc/σ(M, z) in the matter perturbation field. By exploring the correlations between s and global galaxy properties generated by the SHARK semi-analytic model, we find that s contains a significant amount of information on the morphology of galaxies – in fact more information than the spin, concentration, and assembly time of the halo. Therefore, the tree entropy provides an information-rich link between galaxies and their dark matter haloes.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Myriam Gitti ◽  
Fabrizio Brighenti ◽  
Brian R. McNamara

The current generation of flagship X-ray missions,ChandraandXMM-Newton, has changed our understanding of the so-called “cool-core” galaxy clusters and groups. Instead of the initial idea that the thermal gas is cooling and flowing toward the center, the new picture envisages a complex dynamical evolution of the intracluster medium (ICM) regulated by the radiative cooling and the nongravitational heating from the active galactic nucleus (AGN). Understanding the physics of the hot gas and its interplay with the relativistic plasma ejected by the AGN is key for understanding the growth and evolution of galaxies and their central black holes, the history of star formation, and the formation of large-scale structures. It has thus become clear that the feedback from the central black hole must be taken into account in any model of galaxy evolution. In this paper, we draw a qualitative picture of the current knowledge of the effects of the AGN feedback on the ICM by summarizing the recent results in this field.


2019 ◽  
Vol 629 ◽  
pp. A31 ◽  
Author(s):  
I. Urdampilleta ◽  
F. Mernier ◽  
J. S. Kaastra ◽  
A. Simionescu ◽  
J. de Plaa ◽  
...  

We present XMM-Newton/EPIC observations of six merging galaxy clusters and study the distributions of their temperature, iron (Fe) abundance and pseudo-entropy along the merging axis. For the first time, we focused simultaneously, and in a comprehensive way, on the chemical and thermodynamic properties of the newly collided intra cluster medium (ICM). The Fe distribution of these clusters along the merging axis is found to be in good agreement with the azimuthally-averaged Fe abundance profile in typical non-cool-core clusters out to r500. In addition to showing a moderate central abundance peak, though less pronounced than in relaxed systems, the Fe abundance flattens at large radii towards ∼0.2−0.3 Z⊙. Although this shallow metal distribution is in line with the idea that disturbed, non-cool-core clusters originate from the merging of relaxed, cool-core clusters, we find that in some cases, remnants of metal-rich and low entropy cool cores can persist after major mergers. While we obtain a mild anti-correlation between the Fe abundance and the pseudo-entropy in the (lower entropy, K = 200−500 keV cm2) inner regions, no clear correlation is found at (higher entropy, K = 500−2300 keV cm2) outer radii. The apparent spatial abundance uniformity that we find at large radii is difficult to explain through an efficient mixing of freshly injected metals, particularly in systems for which the time since the merger is short. Instead, our results provide important additional evidence in favour of the early enrichment scenario in which the bulk of the metals are released outside galaxies at z >  2−3, and extend it from cool-core and (moderate) non-cool-core clusters to a few of the most disturbed merging clusters as well. These results constitute a first step toward a deeper understanding of the chemical history of merging clusters.


2020 ◽  
Vol 897 (1) ◽  
pp. 15 ◽  
Author(s):  
Chun-Hao To ◽  
Rachel M. Reddick ◽  
Eduardo Rozo ◽  
Eli Rykoff ◽  
Risa H. Wechsler

2014 ◽  
Vol 10 (S311) ◽  
pp. 110-115
Author(s):  
Roger L. Davies ◽  
A. Beifiori ◽  
R. Bender ◽  
M. Cappellari ◽  
J. Chan ◽  
...  

AbstractKMOS is a cryogenic infrared spectrograph fed by twentyfour deployable integral field units that patrol a 7.2 arcminute diameter field of view at the Nasmyth focus of the ESO VLT. It is well suited to the study of galaxy clusters at 1 < z < 2 where the well understood features in the restframe V-band are shifted into the KMOS spectral bands. Coupled with HST imagining, KMOS offers a window on the critical epoch for galaxy evolution, 7-10 Gyrs ago, when the key properties of cluster galaxies were established. We aim to investigate the size, mass, morphology and star formation history of galaxies in the clusters. Here we describe the instrument, discuss the status of the observations and report some preliminary results.


2006 ◽  
Vol 651 (1) ◽  
pp. 120-141 ◽  
Author(s):  
Kevin Bundy ◽  
Richard S. Ellis ◽  
Christopher J. Conselice ◽  
James E. Taylor ◽  
Michael C. Cooper ◽  
...  

Author(s):  
Anthony M Flores ◽  
Adam B Mantz ◽  
Steven W Allen ◽  
R Glenn Morris ◽  
Rebecca E A Canning ◽  
...  

Abstract We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts 1.05 &lt; z &lt; 1.71, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev-Zel’dovich (SZ) effect surveys, and observed with both the XMM-Newton and Chandra satellites. For each cluster, a precise gas mass profile was extracted, from which the value of r500 could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, r &lt; 0.3r500 and 0.3 &lt; r/r500 &lt; 1.0. For the outer bin, the combined measurement for all ten clusters, Z/Z⊙ = 0.21 ± 0.09, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 Solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power law model of the form Z∝(1 + z)γ, we measure a slope $\gamma = -0.5^{+0.4}_{-0.3}$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2.


Sign in / Sign up

Export Citation Format

Share Document