scholarly journals The massive galaxy cluster XMMU J1230.3+1339 at z ∼ 1: colour-magnitude relation, Butcher-Oemler effect, X-ray and weak lensing mass estimates★

2011 ◽  
Vol 411 (4) ◽  
pp. 2667-2694 ◽  
Author(s):  
M. Lerchster ◽  
S. Seitz ◽  
F. Brimioulle ◽  
R. Fassbender ◽  
M. Rovilos ◽  
...  
2020 ◽  
Vol 500 (2) ◽  
pp. 2627-2644
Author(s):  
David Harvey ◽  
Andrew Robertson ◽  
Sut-Ieng Tam ◽  
Mathilde Jauzac ◽  
Richard Massey ◽  
...  

ABSTRACT If properly calibrated, the shapes of galaxy clusters can be used to investigate many physical processes: from feedback and quenching of star formation, to the nature of dark matter. Theorists frequently measure shapes using moments of inertia of simulated particles’. We instead create mock (optical, X-ray, strong-, and weak-lensing) observations of the 22 most massive ($\sim 10^{14.7}\, \mathrm{ M}_\odot$) relaxed clusters in the BAHAMAS simulations. We find that observable measures of shape are rounder. Even when moments of inertia are projected into 2D and evaluated at matched radius, they overestimate ellipticity by 56 per cent (compared to observable strong lensing) and 430 per cent (compared to observable weak lensing). Therefore, we propose matchable quantities and test them using observations of eight relaxed clusters from the Hubble Space Telescope (HST) and Chandra X-Ray Observatory. We also release our HST data reduction and lensing analysis software to the community. In real clusters, the ellipticity and orientation angle at all radii are strongly correlated. In simulated clusters, the ellipticity of inner (<rvir/20) regions becomes decoupled: for example, with greater misalignment of the central cluster galaxy. This may indicate overly efficient implementation of feedback from active galactic nuclei. Future exploitation of cluster shapes as a function of radii will require better understanding of core baryonic processes. Exploitation of shapes on any scale will require calibration on simulations extended all the way to mock observations.


2016 ◽  
Vol 466 (3) ◽  
pp. 3663-3673 ◽  
Author(s):  
Melanie Simet ◽  
Nicholas Battaglia ◽  
Rachel Mandelbaum ◽  
Uroš Seljak
Keyword(s):  
X Ray ◽  

1996 ◽  
Vol 467 ◽  
pp. 168 ◽  
Author(s):  
H. Boehringer ◽  
D. M. Neumann ◽  
S. Schindler ◽  
R. C. Kraan-Korteweg
Keyword(s):  
X Ray ◽  

Author(s):  
S Grandis ◽  
J J Mohr ◽  
J P Dietrich ◽  
S Bocquet ◽  
A Saro ◽  
...  

Abstract We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity– and temperature–mass–redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892 deg2 of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for ΩM, σ8 and w are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance–redshift relation and the parameters of the observable–mass scaling relation limits the impact of the WL calibration on the w constraints, but with BAO measurements from DESI an improved determination of w to 0.043 becomes possible. With Planck CMB priors, ΩM (σ8) can be determined to 0.005 (0.007), and the summed neutrino mass limited to ∑mν < 0.241 eV (at 95%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain ΩM and σ8 to 0.007 and w to 0.050.


2007 ◽  
Vol 3 (S244) ◽  
pp. 374-375
Author(s):  
Leila C. Powell ◽  
Scott T. Kay ◽  
Arif Babul ◽  
Andisheh Mahdavi

AbstractVarious differences in galaxy cluster properties derived from X-ray and weak lensing observations have been highlighted in the literature. One such difference is the observation of mass concentrations in lensing maps which have no X-ray counterparts (e.g. Jee, White, Ford et al. 2005). We investigate this issue by identifying substructures in maps of projected total mass (analogous to weak lensing mass reconstructions) and maps of projected X-ray surface brightness for three simulated clusters. We then compare the 2D mass substructures with both 3D subhalo data and the 2D X-ray substructures. Here we present preliminary results from the first comparison, where we have assessed the impact of projecting the data on subhalo identification.


2018 ◽  
Vol 610 ◽  
pp. A71 ◽  
Author(s):  
Sophia Thölken ◽  
Tim Schrabback ◽  
Thomas H. Reiprich ◽  
Lorenzo Lovisari ◽  
Steven W. Allen ◽  
...  

Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims. We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods. We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results. The X-ray luminosity of Cl J120958.9+495352 in the 0.1–2.4 keV band estimated from our XMM-Newton data is LX = (13.4−1.0+1.2) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based on the weak lensing analysis, we estimate a cluster mass of M500 / 1014 M⊙ = 4.4−2.0+2.2(star.) ± 0.6(sys.) and a gas mass fraction of fgas,2500 = 0.11−0.03+0.06 in good agreement with previous findings for high redshift and local clusters.


2001 ◽  
Vol 561 (2) ◽  
pp. 600-620 ◽  
Author(s):  
S. Zaroubi ◽  
G. Squires ◽  
G. de Gasperis ◽  
A. E. Evrard ◽  
Y. Hoffman ◽  
...  
Keyword(s):  

2017 ◽  
Vol 844 (1) ◽  
pp. 67 ◽  
Author(s):  
Gary A. Wegner ◽  
Keiichi Umetsu ◽  
Sandor M. Molnar ◽  
Mario Nonino ◽  
Elinor Medezinski ◽  
...  

2019 ◽  
Vol 487 (2) ◽  
pp. 2578-2593 ◽  
Author(s):  
Y Zhang ◽  
T Jeltema ◽  
D L Hollowood ◽  
S Everett ◽  
E Rozo ◽  
...  

Abstract The centre determination of a galaxy cluster from an optical cluster finding algorithm can be offset from theoretical prescriptions or N-body definitions of its host halo centre. These offsets impact the recovered cluster statistics, affecting both richness measurements and the weak lensing shear profile around the clusters. This paper models the centring performance of the redMaPPer cluster finding algorithm using archival X-ray observations of redMaPPer-selected clusters. Assuming the X-ray emission peaks as the fiducial halo centres, and through analysing their offsets to the redMaPPer centres, we find that ${\sim } 75\pm 8 {{\ \rm per\ cent}}$ of the redMaPPer clusters are well centred and the mis-centred offset follows a Gamma distribution in normalized, projected distance. These mis-centring offsets cause a systematic underestimation of cluster richness relative to the well-centred clusters, for which we propose a descriptive model. Our results enable the DES Y1 cluster cosmology analysis by characterizing the necessary corrections to both the weak lensing and richness abundance functions of the DES Y1 redMaPPer cluster catalogue.


2018 ◽  
Vol 610 ◽  
pp. A85 ◽  
Author(s):  
Tim Schrabback ◽  
Mischa Schirmer ◽  
Remco F. J. van der Burg ◽  
Henk Hoekstra ◽  
Axel Buddendiek ◽  
...  

We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7−020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.′′35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06−0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal.


Sign in / Sign up

Export Citation Format

Share Document