Immunoendocrine host-parasite interactions during helminth infections: from the basic knowledge to its possible therapeutic applications.

2010 ◽  
pp. no-no ◽  
Author(s):  
Romel Hernández-Bello ◽  
Galileo Escobedo ◽  
Carolina Guzmán ◽  
Elizabeth G. Ibarra-Coronado ◽  
Lorena López-Griego ◽  
...  
1982 ◽  
Vol 243 (5) ◽  
pp. G321-G329
Author(s):  
G. A. Castro

The objective of this presentation is to develop a hypothesis through a survey of pertinent literature rather than to review an established area of physiology. The focal point is the mucosa of the small intestine. The major thesis is that lamina propria cells regulate functions of epithelial cells. Support for this comes from studies of the "immunophysiological" interplay that goes on in the mucosa and that has been amply revealed through investigations of host-parasite interactions. Immunological reactions in several intestinal helminth infections affect epithelial cell differentiation and development as well as secretory, absorptive, and digestive activities. Epithelial cells may be influenced indirectly as bystander cells during immunologically mediated inflammation or directly through their recruitment as effector components in immune reactions. Immune responses, by convention, are thought to be mediated by nonepithelial cells. Therefore, involvement of epithelial cells in effecting immunity or in responding to immunologically elicited signals implies a regulatory role for lamina propria cells in epithelial function. Confirmation of the capacity of epithelial cells to respond to the command of other cells with "memory" capabilities would imply the existence of a sensitive, locally organized, and highly specific adaptive mechanism in the host.


2011 ◽  
Vol 41 (9) ◽  
pp. 925-933 ◽  
Author(s):  
James A. Cotton ◽  
Jennifer K. Beatty ◽  
Andre G. Buret

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


2021 ◽  
Vol 10 (2) ◽  
pp. 205
Author(s):  
Lúcio Lara Santos ◽  
Júlio Santos ◽  
Maria João Gouveia ◽  
Carina Bernardo ◽  
Carlos Lopes ◽  
...  

Schistosomiasis is the most important helminthiasis worldwide in terms of morbidity and mortality. Most of the infections occurs in Africa, which about two thirds are caused by Schistosoma haematobium. The infection with S. haematobium is considered carcinogenic leading to squamous cell carcinoma (SCC) and urothelial carcinoma of the urinary bladder. Additionally, it is responsible for female genital schistosomiasis leading to infertility and higher risk of human immunodeficiency virus (HIV) transmission. Remarkably, a recent outbreak in Corsica (France) drew attention to its potential re-mergence in Southern Europe. Thus far, little is known related to host-parasite interactions that trigger carcinogenesis. However, recent studies have opened new avenues to understand mechanisms on how the parasite infection can lead cancer and other associated pathologies. Here, we present a historical perspective of schistosomiasis, and review the infection-associated pathologies and studies on host–parasite interactions that unveil tentative mechanisms underlying schistosomiasis-associated carcinogenesis.


2021 ◽  
Vol 37 (5) ◽  
pp. 445-455
Author(s):  
Rogini Runghen ◽  
Robert Poulin ◽  
Clara Monlleó-Borrull ◽  
Cristina Llopis-Belenguer

2009 ◽  
Vol 11 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Kristle Krichbaum ◽  
Sarah Perkins ◽  
Michael R. Gannon

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 825
Author(s):  
Tao Wang ◽  
Robin Gasser

Parasitic nematodes impose a significant public health burden, and cause major economic losses to agriculture worldwide. Due to the widespread of anthelmintic resistance and lack of effective vaccines for most nematode species, there is an urgent need to discover novel therapeutic and vaccine targets, informed through an understanding of host–parasite interactions. Proteomics, underpinned by genomics, enables the global characterisation proteins expressed in a particular cell type, tissue and organism, and provides a key to insights at the host–parasite interface using advanced high-throughput mass spectrometry-based proteomic technologies. Here, we (i) review current mass-spectrometry-based proteomic methods, with an emphasis on a high-throughput ‘bottom-up’ approach; (ii) summarise recent progress in the proteomics of parasitic nematodes of animals, with a focus on molecules inferred to be involved in host–parasite interactions; and (iii) discuss future research directions that could enhance our knowledge and understanding of the molecular interplay between nematodes and host animals, in order to work toward new, improved methods for the treatment, diagnosis and control of nematodiases.


Sign in / Sign up

Export Citation Format

Share Document