Contribution of human neutrophils in the development of protective immune response during in vitro Leishmania major infection

2011 ◽  
Vol 33 (11) ◽  
pp. 609-620 ◽  
Author(s):  
S. SAFAIYAN ◽  
A. BOLHASSANI ◽  
S. NYLEN ◽  
H. AKUFFO ◽  
S. RAFATI
2014 ◽  
Vol 8 (9) ◽  
pp. e3194 ◽  
Author(s):  
Iris J. Gonzalez-Leal ◽  
Bianca Röger ◽  
Angela Schwarz ◽  
Tanja Schirmeister ◽  
Thomas Reinheckel ◽  
...  

2011 ◽  
Vol 127 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Parisa-alsadat Tabatabaee ◽  
Mohsen Abolhassani ◽  
Mehdi Mahdavi ◽  
Hossein Nahrevanian ◽  
Kayhan Azadmanesh

2009 ◽  
Vol 78 (2) ◽  
pp. 872-883 ◽  
Author(s):  
Suman Mazumdar ◽  
Paushali Mukherjee ◽  
Syed Shams Yazdani ◽  
S. K. Jain ◽  
Asif Mohmmed ◽  
...  

ABSTRACT A chimeric gene, MSP-Fu24 , was constructed by genetically coupling immunodominant, conserved regions of the two leading malaria vaccine candidates, Plasmodium falciparum merozoite surface protein 1 (C-terminal 19-kDa region [PfMSP-119]) and merozoite surface protein 3 (11-kDa conserved region [PfMSP-311]). The recombinant MSP-Fu24 protein was produced in Escherichia coli cells and purified to homogeneity by a two-step purification process with a yield of ∼30 mg/liter. Analyses of conformational properties of MSP-Fu24 using PfMSP-119-specific monoclonal antibody showed that the conformational epitopes of PfMSP-119 that may be critical for the generation of the antiparasitic immune response remained intact in the fusion protein. Recombinant MSP-Fu24 was highly immunogenic in mice and in rabbits when formulated with two different human-compatible adjuvants and induced an immune response against both PfMSP-119 and PfMSP-311. Purified anti-MSP-Fu24 antibodies showed invasion inhibition of P. falciparum 3D7 and FCR parasites, and this effect was found to be dependent on antibodies specific for the PfMSP-119 component. The protective potential of MSP-Fu24 was demonstrated by in vitro parasite growth inhibition using an antibody-dependent cell inhibition (ADCI) assay with anti-MSP-Fu24 antibodies. Overall, the antiparasitic activity was mediated by a combination of growth-inhibitory antibodies generated by both the PfMSP-119 and PfMSP-311 components of the MSP-Fu24 protein. The antiparasitic activities elicited by anti-MSP-Fu24 antibodies were comparable to those elicited by antibodies generated with immunization with a physical mixture of two component antigens, PfMSP-119 and PfMSP-311. The fusion protein induces a protective immune response with human-compatible adjuvants and may form a part of a multicomponent malaria vaccine.


2018 ◽  
Author(s):  
Franciele Carolina Silva ◽  
Vinicius Dantas Martins ◽  
Felipe Caixeta ◽  
Matheus Batista Carneiro ◽  
Graziele Ribeiro Goes ◽  
...  

AbstractAn association between increased susceptibility to infectious diseases and obesity has been described as a result of impaired immunity in obese individuals. It is not clear whether a similar linkage can be drawn between obesity and parasitic diseases. To evaluate the effect of obesity in the immune response to cutaneous L. major infection, we studied the ability of C57BL/6 mice submitted to a high fat and sugar diet to control leishmaniasis. Mice with diet-induced obesity presented thicker lesions with higher parasite burden and more inflammatory infiltrate in the infected ear when infected with L. major. We observe no difference in IFN-γ or IL-4 production by draining lymph node cells between control and obese mice, but obese mice presented higher production of IgG1 and IL-17. A higher percentage of in vitro-infected peritoneal macrophages was found when these cells were obtained from obese mice when compared to lean mice. In vitro stimulation of macrophages with IL-17 decreased the capacity of cells from control mice to kill the parasite. Moreover, macrophages from obese mice presented higher arginase activity. Together our results indicate that diet-induced obesity impairs resistance to L. major in C57BL/6 mice without affecting the development of Th1 response.Author SummaryThe obesity is a public health problem and it is reaching extraordinary numbers in the world and others diseases are being involved and aggravated as consequence of obesity. What we know is that some diseases are more severe in obese people than in normal people. We did not know how obesity changes the profile of immune response to infectious agents, leading to the more severe diseases. That‘s why we decided to investigate how obese mice lead with Leishmania major infection. Leishmaniasis is a protozoa parasite infection considered a neglected disease. To try our hypothesis we gave a hipercaloric diet to induce obesity in C57BL/6 mice. After that, we injected L. major in the mice ear and followed the lesion for 8 weeks. We observed a ticker lesion and the cells from draining lymph node from obese mice produced more IL-17 than cells from normal mice. We also infected in vitro, macrophages from obese mice and stimulated the cells with IL-17, and we observed that the macrophages from obese mice are more infected by the L. major and it is worst in the presence of IL-17. Our results suggest that diet induced obesity decrease the resistance to infection.


2001 ◽  
Vol 69 (3) ◽  
pp. 1337-1343 ◽  
Author(s):  
Fang Ting Liang ◽  
Mary B. Jacobs ◽  
Mario T. Philipp

ABSTRACT VlsE, the variable surface antigen of the Lyme disease spirochete,Borrelia burgdorferi, contains two invariable domains, at the amino and carboxyl termini, respectively, which collectively account for approximately one-half of the entire molecule's length and remain unchanged during antigenic variation. It is not known if these two invariable domains are exposed at the surface of either the antigen or the spirochete. If they are exposed at the spirochete's surface, they may elicit a protective immune response against B. burgdorferi and serve as vaccine candidates. In this study, a 51-mer synthetic peptide that reproduced the entire sequence of the C-terminal invariable domain of VlsE was conjugated to the carrier keyhole limpet hemocyanin and used to immunize mice. Generated mouse antibody was able to immunoprecipitate native VlsE extracted from cultured B. burgdorferi B31 spirochetes, indicating that the C-terminal invariable domain was exposed at the antigen's surface. However, this domain was inaccessible to antibody binding at the surface of cultured intact spirochetes, as demonstrated by both an immunofluorescence experiment and an in vitro killing assay. Mouse antibody to the C-terminal invariable domain was not able to confer protection against B. burgdorferi infection, indicating that this domain was unlikely exposed at the spirochete's surface in vivo. We concluded that the C-terminal invariable domain was exposed at the antigen's surface but not at the surface of either cultured or in vivo spirochetes and thus cannot elicit protection against B. burgdorferi infection.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 452
Author(s):  
Andrés Vacas ◽  
Celia Fernández-Rubio ◽  
Esther Larrea ◽  
José Peña-Guerrero ◽  
Paul A. Nguewa

A novel serine/threonine protein kinase, LmjF.22.0810, was recently described in Leishmania major. After generating an L. major cell line overexpressing LmjF.22.0810 (named LmJ3OE), the ability of this novel protein to modulate the Th2-type immune response was analyzed. Our results suggest that the protein kinase LmjF.22.0810 might be involved in leishmaniasis outcomes. Indeed, our study outlined the LmJ3OE parasites infectivity in vitro and in vivo. Transgenic parasites displayed lower phagocytosis rates in vitro, and their promastigote forms exhibited lower expression levels of virulence factors compared to their counterparts in control parasites. In addition, LmJ3OE parasites developed significantly smaller footpad swelling in susceptible BALB/c mice. Hematoxylin–eosin staining allowed the observation of a lower inflammatory infiltrate in the footpad from LmJ3OE-infected mice compared to animals inoculated with control parasites. Gene expression of Th2-associated cytokines and effectors revealed a dramatically lower induction in interleukin (IL)-4, IL-10, and arginase 1 (ARG1) mRNA levels at the beginning of the swelling; no expression change was found in Th1-associated cytokines except for IL-12. Accordingly, such results were validated by immunohistochemistry studies, illustrating a weaker expression of ARG1 and a similar induction for inducible NO synthase (iNOS) in footpads from LmJ3OE-infected mice compared to control L. major infected animals. Furthermore, the parasite burden was lower in footpads from LmJ3OE-infected mice. Our analysis indicated that such significant smaller footpad swellings might be due to an impairment of the Th2 immune response that subsequently benefits Th1 prevalence. Altogether, these studies depict LmjF.22.0810 as a potential modulator of host immune responses to Leishmania. Finally, this promising target might be involved in the modulation of infection outcome.


2007 ◽  
Vol 249 (1) ◽  
pp. 1-7 ◽  
Author(s):  
T.U. Maioli ◽  
C.M. Carneiro ◽  
F.A. Assis ◽  
A.M.C. Faria

Sign in / Sign up

Export Citation Format

Share Document