scholarly journals A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele

1992 ◽  
Vol 2 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Eiji Nambara ◽  
Satoshi Naito ◽  
Peter McCourt
2007 ◽  
Vol 34 (11) ◽  
pp. 1019 ◽  
Author(s):  
Mechthild Tegeder ◽  
Qiumin Tan ◽  
Aleel K. Grennan ◽  
John W. Patrick

Expression of the amino acid permeases PsAAP1 and PsAAP2 was analysed in developing pea (Pisum sativum L.) plants. Both transporters were expressed in seed coats and cotyledon epidermal transfer cells and storage parenchyma cells. AAP expression is developmentally regulated and coincides with the onset of storage protein synthesis. Nitrogen was shown to induce AAP expression and AAP transcript levels were upregulated during the photoperiod. Analysis of Arabidopsis thaliana AAP1 promoter activity in pea, using promoter-β-glucuronidase (promotor-GUS) studies, revealed targeting of GUS to seed coats and cotyledon epidermal transfer cells. Expression was found in the nutritious endosperm during the early stages of seed development, whereas GUS staining in embryos was detected from the heart stage onward. In addition, AAP1 expression was observed in the phloem throughout the plant. This finding equally applied to PsAAP1 expression as shown by in situ mRNA hybridisation, which also demonstrated that PsAAP1 expression was localised to companion cells. Overall, PsAAP1 expression patterns and cellular localisation point to a function of the transporter in phloem loading of amino acids for translocation to sinks and in seed loading for development and storage protein accumulation.


2001 ◽  
Vol 158 (4) ◽  
pp. 457-464 ◽  
Author(s):  
Sabine Golombek ◽  
Hardy Rolletschek ◽  
Ulrich Wobus ◽  
Hans Weber

2015 ◽  
Vol 84 (1) ◽  
pp. 139-142 ◽  
Author(s):  
Joanna Simińska ◽  
Wiesław Bielawski

In this paper the complete cDNA sequence of a newly identified triticale phytocystatin, TrcC-7, was analyzed. Because <em>TrcC-7</em> transcripts were present in seeds, we hypothesized that it may regulate storage protein accumulation and degradation. Therefore, changes in mRNA and protein levels during the entire period of seed development and germination were examined. Expression of <em>TrcC-7</em> increased during development and decreased at the end of maturation and subsequently increased during seed germination. Based on these results, TrcC-7 likely regulates cysteine proteinase activity during the accumulation and mobilization of storage proteins.


2005 ◽  
Vol 32 (11) ◽  
pp. 997 ◽  
Author(s):  
Elke G. Rosche ◽  
Daniel Blackmore ◽  
Christina E. Offler ◽  
John W. Patrick

Pea (Pisum sativum L.) cotyledons, overexpressing a potato sucrose transporter (StSUT1), were used to explore the hypothesis that sucrose stimulates the onset of storage protein biosynthesis. The study focused on the transition between pre-storage and storage phases of seed development. During this period supply of sucrose and hexose to transgenic cotyledons was unaffected by StSUT1 expression. However, protoplasmic levels of sucrose but not hexoses were elevated in transgenic cotyledons. Total protein levels in cotyledons followed the same temporal trend as observed for sucrose and this was reflected in an earlier appearance of protein bodies. Protein levels in wild type and StSUT1 cotyledons were found to lie on the same sucrose dose-response curve and this could be reproduced in vitro when wild type cotyledons were cultured on media containing various sucrose concentrations. Rates of [14C]sucrose uptake and incorporation into polymeric forms were consistent with protoplasmic sucrose supplying a proportion of the carbon skeletons required for storage protein accumulation. In addition, vicilin gene expression was up-regulated earlier in StSUT1 cotyledons. We conclude that sucrose functions both as a signal and fuel to stimulate storage protein accumulation and assembly into protein bodies. An earlier stimulation of storage protein synthesis is considered to largely account for the 14% increase in protein levels of StSUT1 seeds at harvest.


2019 ◽  
Vol 60 (10) ◽  
pp. 2193-2205
Author(s):  
Hong-Li Chou ◽  
Li Tian ◽  
Masako Fukuda ◽  
Toshihiro Kumamaru ◽  
Thomas W Okita

Abstract Tudor-SN is involved in a myriad of transcriptional and post-transcriptional processes due to its modular structure consisting of 4 tandem SN domains (4SN module) and C-terminal Tsn module consisting of Tudor-partial SN domains. We had previously demonstrated that OsTudor-SN is a key player for transporting storage protein mRNAs to specific ER subdomains in developing rice endosperm. Here, we provide genetic evidence that this multifunctional RBP is required for storage protein expression, seed development and protein body formation. The rice EM1084 line, possessing a nonsynonymous mutation in the 4SN module (SN3 domain), exhibited a strong reduction in grain weight and storage protein accumulation, while a mutation in the Tudor domain (47M) or the loss of the Tsn module (43M) had much smaller effects. Immunoelectron microscopic analysis showed the presence of a new protein body type containing glutelin and prolamine inclusions in EM1084, while 43M and 47M exhibited structurally modified prolamine and glutelin protein bodies. Transcriptome analysis indicates that OsTudor-SN also functions in regulating gene expression of transcriptional factors and genes involved in developmental processes and stress responses as well as for storage proteins. Normal protein body formation, grain weight and expression of many genes were partially restored in EM1084 transgenic line complemented with wild-type OsTudor-SN gene. Overall, our study showed that OsTudor-SN possesses multiple functional properties in rice storage protein expression and seed development and that the 4SN and Tsn modules have unique roles in these processes.


Sign in / Sign up

Export Citation Format

Share Document