Increased capacity for sucrose uptake leads to earlier onset of protein accumulation in developing pea seeds

2005 ◽  
Vol 32 (11) ◽  
pp. 997 ◽  
Author(s):  
Elke G. Rosche ◽  
Daniel Blackmore ◽  
Christina E. Offler ◽  
John W. Patrick

Pea (Pisum sativum L.) cotyledons, overexpressing a potato sucrose transporter (StSUT1), were used to explore the hypothesis that sucrose stimulates the onset of storage protein biosynthesis. The study focused on the transition between pre-storage and storage phases of seed development. During this period supply of sucrose and hexose to transgenic cotyledons was unaffected by StSUT1 expression. However, protoplasmic levels of sucrose but not hexoses were elevated in transgenic cotyledons. Total protein levels in cotyledons followed the same temporal trend as observed for sucrose and this was reflected in an earlier appearance of protein bodies. Protein levels in wild type and StSUT1 cotyledons were found to lie on the same sucrose dose-response curve and this could be reproduced in vitro when wild type cotyledons were cultured on media containing various sucrose concentrations. Rates of [14C]sucrose uptake and incorporation into polymeric forms were consistent with protoplasmic sucrose supplying a proportion of the carbon skeletons required for storage protein accumulation. In addition, vicilin gene expression was up-regulated earlier in StSUT1 cotyledons. We conclude that sucrose functions both as a signal and fuel to stimulate storage protein accumulation and assembly into protein bodies. An earlier stimulation of storage protein synthesis is considered to largely account for the 14% increase in protein levels of StSUT1 seeds at harvest.

2007 ◽  
Vol 34 (11) ◽  
pp. 1019 ◽  
Author(s):  
Mechthild Tegeder ◽  
Qiumin Tan ◽  
Aleel K. Grennan ◽  
John W. Patrick

Expression of the amino acid permeases PsAAP1 and PsAAP2 was analysed in developing pea (Pisum sativum L.) plants. Both transporters were expressed in seed coats and cotyledon epidermal transfer cells and storage parenchyma cells. AAP expression is developmentally regulated and coincides with the onset of storage protein synthesis. Nitrogen was shown to induce AAP expression and AAP transcript levels were upregulated during the photoperiod. Analysis of Arabidopsis thaliana AAP1 promoter activity in pea, using promoter-β-glucuronidase (promotor-GUS) studies, revealed targeting of GUS to seed coats and cotyledon epidermal transfer cells. Expression was found in the nutritious endosperm during the early stages of seed development, whereas GUS staining in embryos was detected from the heart stage onward. In addition, AAP1 expression was observed in the phloem throughout the plant. This finding equally applied to PsAAP1 expression as shown by in situ mRNA hybridisation, which also demonstrated that PsAAP1 expression was localised to companion cells. Overall, PsAAP1 expression patterns and cellular localisation point to a function of the transporter in phloem loading of amino acids for translocation to sinks and in seed loading for development and storage protein accumulation.


2017 ◽  
Vol 474 (9) ◽  
pp. 1547-1558 ◽  
Author(s):  
Iakov N. Rudenko ◽  
Alice Kaganovich ◽  
Rebekah G. Langston ◽  
Aleksandra Beilina ◽  
Kelechi Ndukwe ◽  
...  

Autosomal dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease (PD). Most pathogenic LRRK2 mutations result in amino acid substitutions in the central ROC (Ras of complex proteins)–C-terminus of ROC–kinase triple domain and affect enzymatic functions of the protein. However, there are several variants in LRRK2, including the risk factor G2385R, that affect PD pathogenesis by unknown mechanisms. Previously, we have shown that G2385R LRRK2 has decreased kinase activity in vitro and altered affinity to LRRK2 interactors. Specifically, we found an increased binding to the chaperone Hsp90 (heat shock protein 90 kDa) that is known to stabilize LRRK2, suggesting that G2385R may have structural effects on LRRK2. In the present study, we further explored the effects of G2385R on LRRK2 in cells. We found that G2385R LRRK2 has lower steady-state intracellular protein levels compared with wild-type LRRK2 due to increased protein turnover of the mutant protein. Mechanistically, this is a consequence of a higher affinity of G2385R compared with the wild-type protein for two proteins involved in proteasomal degradation, Hsc70 and carboxyl-terminus of Hsc70-interacting protein (CHIP). Overexpression of CHIP decreased intracellular protein levels of both G2385R mutant and wild-type LRRK2, while short interfering RNA CHIP knockdown had the opposite effect. We suggest that the G2385R substitution tilts the equilibrium between refolding and proteasomal degradation toward intracellular degradation. The observation of lower steady-state protein levels may explain why G2385R is a risk factor rather than a penetrant variant for inherited PD.


2015 ◽  
Vol 84 (1) ◽  
pp. 139-142 ◽  
Author(s):  
Joanna Simińska ◽  
Wiesław Bielawski

In this paper the complete cDNA sequence of a newly identified triticale phytocystatin, TrcC-7, was analyzed. Because <em>TrcC-7</em> transcripts were present in seeds, we hypothesized that it may regulate storage protein accumulation and degradation. Therefore, changes in mRNA and protein levels during the entire period of seed development and germination were examined. Expression of <em>TrcC-7</em> increased during development and decreased at the end of maturation and subsequently increased during seed germination. Based on these results, TrcC-7 likely regulates cysteine proteinase activity during the accumulation and mobilization of storage proteins.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3601-3601 ◽  
Author(s):  
Karthika Natarajan ◽  
Trevor J Mathias ◽  
Kshama A Doshi ◽  
Adriana E Tron ◽  
Manfred Kraus ◽  
...  

Abstract Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) are present in acute myeloid leukemia (AML) cells in 30% of cases and are associated with high relapse rate and short disease-free survival. FLT3 inhibitors have clinical activity, but their activity is limited and transient. New therapeutic approaches combining FLT3 inhibitors and inhibitors of downstream or parallel signaling pathways may increase depth and duration of responses. The Pim-1 serine/threonine kinase is transcriptionally upregulated by FLT3-ITD. We previously demonstrated that Pim-1 phosphorylates and stabilizes FLT3 and thereby promotes its signaling in a positive feedback loop. Pim kinase inhibitors are in clinical trials. Here we studied the effect of combinations of the Pim kinase inhibitor AZD1208 and clinically active FLT3 inhibitors on AML with FLT3-ITD in vitro and in vivo. Ba/F3-ITD cells, with FLT3-ITD, were grown in medium with the Pim kinase inhibitor AZD1208 at 1 μM and/or the FLT3 inhibitors quizartinib (Q), sorafenib (S) or crenolanib (C) at their IC50values of 1, 2.5 and 20 nM, respectively, and viable cells were measured at serial time points. While Q, S, C or AZD1208 treatments reduced cell numbers, compared to DMSO control, combined AZD1208 and Q, S or C treatments abrogated proliferation. Because FLT3-ITD cells remain responsive to FLT3 ligand (FLT3L) despite constitutive FLT3 activation and increased FLT3L levels following chemotherapy have been hypothesized to contribute to relapse, we repeated the proliferation experiments in the presence of 0, 1, 3 and 10 ng/ml FLT3L. FLT3L produced a concentration-dependent increase in proliferation and, while Q, S, C or AZD1208 treatments individually reduced cell numbers, combined AZD1208 and Q, S or C abrogated proliferation at all FLT3L concentrations tested, suggesting that these combinations overcome growth stimulation by FLT3L. To understand the anti-proliferative effect of combined Pim-1 and FLT3 inhibitors, we first studied cell cycle effects of AZD1208 and Q, S or C in Ba/F3-ITD cells and of AZD1208 and Q in the additional FLT3-ITD cell lines 32D-ITD, MV4-11 and MOLM14. We found a progressive increase in sub-G1 phase cells at 24, 48 and 72 hours, consistent with induction of apoptosis. Synergistic induction of apoptosis was confirmed by Annexin V/propidium iodide labeling of Ba/F3-ITD and 32D-ITD cells treated for 48 hours with AZD1208 combined with Q (p<0.0001), S (p<0.0001) or C (p<0.001), and of MV4-11 (p<0.0001) and MOLM14 (p<0.05) cells treated with AZD1208 combined with Q, in relation to each drug alone. Apoptosis was additionally confirmed by loss of mitochondrial membrane potential. Synergistic induction of apoptosis was not seen in Ba/F3-WT or 32D-WT cells, with wild-type FLT3, indicating a FLT3-ITD-specific effect. Synergistic (p<0.01) induction of apoptosis was seen in three FLT3-ITD AML patient samples treated in vitro with AZD1208 combined with Q. In an in vivo model, synergistic decrease in tumor volume was seen with combined AZD1208 and Q therapy in mice with subcutaneously implanted MV4-11 cells, with FLT3-ITD, but not with KG1a cells, with wild-type FLT3. Mechanistically, combined AZD1208 and Q treatment in vitro did not increase reactive oxygen species, compared to each drug alone, but increased both cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP) levels, and caspase 3 cleavage was reduced by co-incubation with the pan-caspase inhibitor Z-VAD. Moreover, combined AZD1208 and Q treatment caused a synergistic decrease in expression of the anti-apoptotic Mcl-1 and of Bcl-xL proteins, but did not significantly alter Bim-1, p-Bad, Bad, Bax, Bak or Bcl-2, pro- and anti-apoptotic protein levels. Bcl-xL mRNA expression decreased along with protein levels, but Mcl-1 mRNA levels remain unchanged, indicating post-transcriptional down-regulation of Mcl-1 by the combination treatment. In summary, synergistic cytotoxicity of AZD1208 and clinically active FLT3 inhibitors was demonstrated in FLT3-ITD cell lines and patient samples in vitro and in cell lines in vivo, via caspase-mediated apoptosis, associated with a synergistic decrease in Mcl-1 and Bcl-xL expression. Our data suggest clinical promise for combination therapy with Pim kinase and FLT3 inhibitors in patients with AML with FLT3-ITD. Disclosures No relevant conflicts of interest to declare.


1993 ◽  
Vol 374 (7-12) ◽  
pp. 887-894 ◽  
Author(s):  
Mathias WENZEL ◽  
Heinrich GERS-BARLAG ◽  
Anneliese SCHIMPL ◽  
Harold RÜDIGER

Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 365-371 ◽  
Author(s):  
Myrna S. Rezcallah ◽  
Michael D. P. Boyle ◽  
Darren D. Sledjeski

The plasminogen activator streptokinase has been proposed to be a key component of a complex mechanism that promotes skin invasion by Streptococcus pyogenes. This study was designed to compare ska gene message and protein levels in wild-type M1 serotype isolate 1881 and a more invasive variant recovered from the spleen of a lethally infected mouse. M1 isolates selected for invasiveness demonstrated enhanced levels of active plasminogen activator activity in culture. This effect was due to a combination of increased expression of the ska gene and decreased expression of the speB gene. The speB gene product, SpeB, was found to efficiently degrade streptokinase in vitro.


Sign in / Sign up

Export Citation Format

Share Document