Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis

2011 ◽  
Vol 143 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Guoxin Zhou ◽  
Xia Wang ◽  
Feng Yan ◽  
Xia Wang ◽  
Ran Li ◽  
...  
Genome ◽  
2015 ◽  
Vol 58 (6) ◽  
pp. 323-331 ◽  
Author(s):  
Baoju Wang ◽  
Ying Wang ◽  
Yang Zhang ◽  
Ping Han ◽  
Fei Li ◽  
...  

The striped rice stem borer, Chilo suppressalis, a destructive pest of rice, has developed high levels of resistance to certain insecticides. Esterases are reported to be involved in insecticide resistance in several insects. Therefore, this study systematically analyzed esterase-like genes in C. suppressalis. Fifty-one esterase-like genes were identified in the draft genomic sequences of the species, and 20 cDNA sequences were derived which encoded full- or nearly full-length proteins. The putative esterase proteins derived from these full-length genes are overall highly diversified. However, key residues that are functionally important including the serine residue in the active site are conserved in 18 out of the 20 proteins. Phylogenetic analysis revealed that most of these genes have homologues in other lepidoptera insects. Genes CsuEst6, CsuEst10, CsuEst11, and CsuEst51 were induced by the insecticide triazophos, and genes CsuEst9, CsuEst11, CsuEst14, and CsuEst51 were induced by the insecticide chlorantraniliprole. Our results provide a foundation for future studies of insecticide resistance in C. suppressalis and for comparative research with esterase genes from other insect species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karen R. Mifsud ◽  
Clare L. M. Kennedy ◽  
Silvia Salatino ◽  
Eshita Sharma ◽  
Emily M. Price ◽  
...  

AbstractGlucocorticoid hormones (GCs) — acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) — are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.


2021 ◽  
Author(s):  
Jing‐Mei Huang ◽  
Hao Sun ◽  
Lin‐Feng He ◽  
Chong Liu ◽  
Wen‐Chao Ge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document