Stratigraphic architecture and depositional setting of the coarse-grained Upper Cambrian Owen Conglomerate, West Coast Range, western Tasmania

2003 ◽  
Vol 50 (6) ◽  
pp. 835-852 ◽  
Author(s):  
C. A. Noll ◽  
M. Hall
2021 ◽  
Vol 9 (9) ◽  
pp. 1012
Author(s):  
Ibrahim Ghandour ◽  
Hamad Al-Washmi ◽  
Athar Khan ◽  
Ammar Mannaa ◽  
Mohammed Aljahdali ◽  
...  

This study utilizes lithofacies characteristics, petrographic, XRD, and stable isotope data of Al-Mejarma beachrocks, Red Sea, Saudi Arabia, to interpret its depositional setting, origin of cement, and coastal evolution. The beachrock is 1.15 m thick, medium to very coarse-grained sandstone with scattered granules. It shows massive to graded bedding, horizontal, ripple, and shore parallel to slightly oblique planar cross-laminations, with a remarkable absence of bioturbation. It was deposited by shore-parallel longshore currents in a relatively high-energy beach environment. The framework comprises quartz, feldspars, and lithic fragments admixed with biogenic remains of algae, mollusca, foraminifera, corals, and echinoids. They are cemented by high magnesium calcite in the form of isopachous rims and pore-filling blades, and rarely, as a meniscus bridge. The mean values of δ18OVPDB and δ13CVPDB are 0.44‰ and 3.65‰, respectively, suggesting a seawater origin for the cement. The framework composition, facies geometry, and association with back-barrier lagoon impose a deposition as a shoreface-beach barrier through two stages corresponding to the middle and late Holocene. The first stage attests landward migrating sediment accumulation and rapid marine cementation. The sediments stored offshore during the early and middle Holocene humid periods migrated landward from offshore and alongshore by onshore waves and longshore drift during the middle and late Holocene sea-level highstand. They were cemented to form beachrock and subsequently emerged as the late Holocene sea-level fell.


2018 ◽  
Vol 69 (1) ◽  
pp. 89-113 ◽  
Author(s):  
Slavomír Nehyba

AbstractTwo coarse-grained Gilbert-type deltas in the Lower Badenian deposits along the southern margin of the Western Carpathian Foredeep (peripheral foreland basin) were newly interpreted. Facies characterizing a range of depositional processes are assigned to four facies associations — topset, foreset, bottomset and offshore marine pelagic deposits. The evidence of Gilbert deltas within open marine deposits reflects the formation of a basin with relatively steep margins connected with a relative sea level fall, erosion and incision. Formation, progradation and aggradation of the thick coarse-grained Gilbert delta piles generally indicate a dramatic increase of sediment supply from the hinterland, followed by both relatively continuous sediment delivery and an increase in accommodation space. Deltaic deposition is terminated by relatively rapid and extended drowning and is explained as a transgressive event. The lower Gilbert delta was significantly larger, more areally extended and reveals a more complicated stratigraphic architecture than the upper one. Its basal surface represents a sequence boundary and occurs around the Karpatian/Badenian stratigraphic limit. Two coeval deltaic branches were recognized in the lower delta with partly different stratigraphic arrangements. This different stratigraphic architecture is mostly explained by variations in the sediment delivery and /or predisposed paleotopography and paleobathymetry of the basin floor. The upper delta was recognized only in a restricted area. Its basal surface represents a sequence boundary probably reflecting a higher order cycle of a relative sea level rise and fall within the Lower Badenian. Evidence of two laterally and stratigraphically separated coarse-grained Gilbert deltas indicates two regional/basin wide transgressive/regressive cycles, but not necessarily of the same order. Provenance analysis reveals similar sources of both deltas. Several partial source areas were identified (Mesozoic carbonates of the Northern Calcareous Alps and the Western Carpathians, crystalline rocks of the eastern margin of the Bohemian Massif, older sedimentary infill of the Carpathian Foredeep and/or the North Alpine Foreland Basin, sedimentary rocks of the Western Carpathian/Alpine Flysch Zone).


1992 ◽  
Vol 6 ◽  
pp. 249-249 ◽  
Author(s):  
Raymond R. Rogers ◽  
Catherine A. Forster ◽  
Cathleen L. May ◽  
Alfredo Monetta ◽  
Paul C. Sereno

The oldest-known dinosaurs (Herrerasaurus, Pisanosaurus) occur within the Ischigualasto Formation. Recent work in the formation has brought to light significant new material, including the complete skeleton of a new primitive dinosaur. We sketch below the paleoenvironment and faunal succession during the range of these early dinosaurs, and review some of the taphonomic factors that shaped their fossil record.The Ischigualasto Formation (Carnian?) is included within the Agua de la Peña Group, a series of continental Triassic deposits exposed in the Ischigualasto-Ville Union Basin of northwest Argentina. Ischigualasto sediments rest unconformably upon the carbonaceous fluvial/lacustrine Los Rastros Formation; this contact is characterized locally by marked angular discordance. The upper contact is gradational into red-beds of the Los Colorados Formation. Medium- to coarse-grained conglomeratic sandstones, siltstones, and silty mudstones dominate the section. Sand bodies are characterized by medium- to large-scale trough cross-stratification and broad lenticular/narrow sheet geometries, and are interpreted as deposits of shallow, low-sinuosity streams. Siltstones and mudstones show pervasive evidence of soil development, including root traces, nodular caliche horizons, and pedogenic slickensides. Deposits attributable to lacustrine/paludal sedimentation are scarce, and freshwater vertebrates and invertebrates are extremely rare. These data suggest an upland depositional setting on a low-relief alluvial plain with seasonal climate.The Ischigualasto vertebrate fauna includes archosaurs, rhynchosaurs, traversodontid and carnivorous cynodonts, and temnospondyl amphibians. Rhynchosaurs dominate (relative specimen abundance) in the lower half of the section, but are absent from the upper half. Traversodontid cynodonts occur throughout the formation, but are much more abundant up-section. Archosaurs, carnivorous cynodonts, and particularly temnospondyls are rare throughout, with dinosaurs limited to the lower half. No major stratigraphic or sedimentologic changes occur up-section, and there is no evidence for significant shifts in physical or chemical taphonomic processes. Thus, trends in relative taxon abundance likely record a true biotic signal (e.g., local extinction, immigration) rather than a taphonomically-driven preservational bias.Fossils are preserved as isolated carcasses or disarticulated elements, most often in fine-grained overbank facies. Bone beds and microsites are conspicuously absent. Temnospondyl remains were found within a local carbonaceous lens developed upon a sand body, suggesting autochthonous burial in an abandoned-channel setting. Isolated skulls, particularly those of the traversodontid Exaeretodon, are extremely common. Fifteen isolated crania of this cynodont were mapped in a single stratum with limited areal exposure. Abundant preservation of isolated therapsid crania has also been reported in the Beaufort Series (Permo-Triassic) of the Karoo Basin, South Africa (Smith, 1980). Post-disarticulation hydrodynamic sorting (enhanced by scavenging?) of an areally dispersed mass-mortality assemblage may explain this unusual occurrence.


2016 ◽  
Vol 76 ◽  
pp. 187-209 ◽  
Author(s):  
Gijs A. Henstra ◽  
Sten-Andreas Grundvåg ◽  
Erik P. Johannessen ◽  
Thomas B. Kristensen ◽  
Ivar Midtkandal ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 361
Author(s):  
Marcello De Togni ◽  
Marco Gattiglio ◽  
Stefano Ghignone ◽  
Andrea Festa

We present a detailed description of the tectono-stratigraphic architecture of the eclogite-facies Internal Piedmont Zone (IPZ) metaophiolite, exposed in the Lanzo Valleys (Western Alps), which represents the remnant of the Jurassic Alpine Tethys. Seafloor spreading and mantle exhumation processes related to the Alpine Tethys evolution strongly conditioned the intra-oceanic depositional setting, which resulted in an articulated physiography and a heterogeneous stratigraphic succession above the exhumed serpentinized mantle. “Complete” and “reduced” successions were recognized, reflecting deposition in morphological or structural lows and highs, respectively. The “complete” succession consists of quartzite, followed by marble and calcschist. The “reduced” succession differs for the unconformable contact of the calcschist directly above mantle rocks, lacking quartzite and gray marble. The serpentinite at the base of this succession is intruded by metagabbro and characterized at its top by ophicalcite horizons. Mafic metabreccia grading to metasandstone mark the transition between the “complete” and “reduced” successions. The character of the reconstructed succession and basin floor physiography of the IPZ metaophiolite is well comparable with the Middle Jurassic–Late Cretaceous succession of both the Queyras Complex (External Piedmont Zone) and the Internal Ligurian Units (Northern Apennines) and with modern slow-spreading mid-ocean ridges.


2003 ◽  
Vol 94 (3) ◽  
pp. 207-225 ◽  
Author(s):  
Jason A. Dunlop ◽  
Lyall I. Anderson ◽  
Simon J. Braddy

ABSTRACTThe type material of Chasmataspis laurencii Caster & Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician (Tremadoc to Caradoc) of Sevier County, Tennessee, USA, is redescribed, and comparisons are drawn with recently discovered Devonian chasmataspids from Scotland, Germany and Russia. The depositional setting of the C. laurencii fossils is reinterpreted as an ash fall into shallow marine/tidal sediments. Chasmataspis laurencii confirms the presence of 13 opisthosomal segments in Chasmataspidida, a character of unresolved polarity. The phylogenetic position ofC. laurencii is difficult to resolve. A monophyletic Chasmataspidida has one convincing autapomorphy in the nine-segmented postabdomen, but C. laurencii shares a number of characters with xiphosurans (i.e. cardiac lobe, pre-abdomen with axial region, biramous and chelate limbs), while the Devonian taxa more closely resemble eurypterids (i.e. through pediform limbs and a genital appendage). Earlier interpretations of the respiratory system in C. laurencii appear unconvincing in the light of new evidence from Devonian forms with opisthosomal opercula. Resting impressions of a Chasmataspis-like animal from the Upper Cambrian Hickory Sandstone of Texas, USA, also appear to show evidence of opercula. These Texan fossils could represent the oldest record of Euchelicerata. Two chasmataspid families are recognised, and C. laurencii is placed in the monotypic Chasmataspididae Caster & Brooks, 1956, redefined here on the fused pre-abdominal buckler with an axial region and the narrow, elongate post-abdomen ending in a long, lanceolate telson.


Sign in / Sign up

Export Citation Format

Share Document