faunal succession
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Madeline P. B. C. Anderson ◽  
Phillip B. Fenberg ◽  
Huw J. Griffiths ◽  
Katrin Linse

In 2018 RRS James Clark Ross investigated the marine benthic biodiversity of the Prince Gustav Channel area which separates the eastern coast of the Antarctic Peninsula from James Ross Island. The southern end of this channel had been covered by the Prince Gustav Ice Shelf until its collapse in 1995. Benthic samples were collected by an epibenthic sledge at six stations (200–1,200 m depth) in the channel and adjacent Duse Bay. In total 20,307 live collected mollusc specimens belonging to 50 species and 4 classes (Solenogastres, Bivalvia, Gastropoda, and Scaphopoda) were identified. The area may be characterised by it’s low species richness (ranging from 7 to 39 species per station) but high abundances (specifically of the Scaphopods with 11,331 specimens). The functional traits of the community were dominated by motile development and mobility type. Assemblage analyses of the molluscan species abundances within the Prince Gustav Channel stations sit distinct, with no pattern by depth or location. However, when bivalve assemblages were analysed with reference to the wider Weddell Gyre region (15 stations from 300 to 2,000 m depth), the Prince Gustav Channel sits distinct from the other Weddell Gyre stations with a higher dissimilarity between the deeper or more geographically distant areas. The Prince Gustav Channel is undergoing colonisation following the recent ice shelf collapse. With many Antarctic ice shelves threatened under climate warming, this area, with future monitoring, may serve as a case study of benthic faunal succession.


2021 ◽  
Vol 151 (4) ◽  
pp. 335-361
Author(s):  
Dániel Botka ◽  
Nóra Rofrics ◽  
Lajos Katona ◽  
Imre Magyar

As the almost 200-year palaeontological research revealed, the geographical distribution of various fossil mollusk faunas in deposits of the late Neogene Lake Pannon displays a regular pattern. The lake basin was filled by lateral accretion of sediments, resulting in condensed sedimentary successions in the distal parts of the basin and successively younger shallow-water deposits from the margins towards the basin center. Exposed intra-basin basement highs, however, broke this strict pattern when they acted as sediment sources during the lake’s lifetime. The Mecsek Mts in southern Hungary was such an island in Lake Pannon during the early late Miocene. Deposition of the 200 m thick Sarmatian–Pannonian sedimentary succession in Pécs-Danitzpuszta at the foot of the Mecsek Mts was thus controlled by local tectonic and sedimentary processes, resulting in a unique succession of facies and mollusk faunas. A typical, restricted marine Sarmatian fauna is followed by a distinct freshwater or oligohaline interval, which, according to micropalaeontological evidence, still belongs to the Sarmatian. Although poor preservation of fossils does not allow firm conclusions, it seems that freshwater Sarmatian snails were the ancestors of the brackish-water-adapted early Pannonian pulmonate snail taxa. The successive “Sarmatian-type” dwarfed cockle fauna is similar to those widely reported from the Sarmatian–Pannonian boundary in various parts of the Pannonian Basin; however, a thorough taxonomic study of its species is still lacking. The bulk of the sedimentary succession corresponds to the sublittoral to profundal “white marls,” which are widespread in the southern Pannonian Basin. In Croatia and Serbia, they are divided into the Lymnocardium praeponticum or Radix croatica Zone (11.6–11.4 Ma) below, and the Congeria banatica Zone (11.4–9.7 Ma) above; this division can be applied to the Pécs-Danitzpuszta succession as well. Sedimentation of the calcareous marl, however, ceased at Pécs-Danitzpuszta at about 10.5–10.2 Ma ago (during the younger part of the Lymnocardium schedelianum Chron), when silt was deposited with a diverse sublittoral mollusk fauna. Similar faunas are known from the Vienna Basin, southern Banat, and other marginal parts of the Pannonian Basin System, but not from Croatia and Serbia, where deposition of the deep-water white marls continued during this time. Finally, the Pécs-Danitzpuszta succession was capped with a thick, coarse-grained sand series that contains mollusk molds and casts representing a typical littoral assemblage. This littoral fauna is well-known from easternmost Austria, northern Serbia, and northwestern Romania, but never directly from above the sublittoral L. schedelianum Zone. The fauna is characteristic for the upper part of the Lymnocardium conjungens Zone and has an inferred age of ca. 10.2–10.0 Ma. The Pécs-Danitzpuszta succession thus allows to establish the chronostratigraphic relationship between mollusk faunas that have not been observed in one succession nor in close proximity to each other in other parts of the Pannonian Basin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swaima Sharif ◽  
Ayesha Qamar

Abstract Background Studies on the insect fauna of animal corpses, used as a vertebrate model, may help forensic investigation cases to estimate the post-mortem-interval (PMI), cause of death, and crime-scene location. Likewise, entomofauna of buried corpses can assist in determining the post-burial-interval (PBI), movement of the body or hiding of the crime. The bodies buried under the soil decompose at a slower rate than the body exposed. Also, there are fewer insects that can go underground to locate the corpse. Such types of studies on the insect fauna of buried carrion can help in forensic investigation cases. The current study aims to determine the succession of a goat carcass buried shallowly in an outdoor habitat of the Aligarh Region, North India. Results In the present study, we examined a goat carcass buried at a depth of nine inches to determine the type of insects capable of colonizing buried animal carcass in the study area of Aligarh, Uttar Pradesh, India. We have found five species of Diptera, three species of Coleoptera, one Hemipteran species, and one Hymenopteran species. Adult Dipterans found during different samplings were Megaselia scalaris (Loew 1866), Chrysomya megacephala (Fabricius 1794), and Calliphora vicina (Robineau-Desvoidy, 1830). Dipterans’ immature stages were found to be of Synthesiomyia nudiseta (van der Wulp, 1883) and Hydrotaea capensis (Wiedemann, 1830) Megaselia scalaris. Adults of Saprinus quadriguttatus (Fabricius, 1798), Saprinus splendens (Paykull, 1811), and Onthophagous quadridentatus (Fabricius, 1798) of order Coleoptera. Adult Cydnus species (Fabricius, 1803) of Hemiptera and Dorylus species (Fabricius, 1793) of Hymenoptera have also been recorded. During the sampling, the authors reported the stages of carcass disintegration and the insects associated with it. Conclusions Flies, beetles, and ants have been recorded in association with the buried goat carcass, which may add to the knowledge of colonization of buried bodies in India and around the globe. S. nudiseta, H. capensis, and M. scalaris, which are found on the goat carrion in the current study, have also been reported on human corpses in the past. Furthermore, M. scalaris found consistently on two sampling dates beneath the ground on the goat carcass and was also seen running on the grave’s surface. In addition, authors have reported several species belonging to different order and families, corresponding to various stages of decomposition of corpse which were earlier not known from buried corpses from India. So, it is crucial and may have implications in medicolegal cases.


Stratigraphy ◽  
2021 ◽  
pp. 29-70
Author(s):  
Stephen R. Packer ◽  
Kathryn L. Canner ◽  
Ali Chalabi

ABSTRACT: The Kurdistan region of northern Iraq contains world-class outcrops that make it possible to examine the Cretaceous deep and shallow marine Tethyan faunal succession. Six separate sections covering the Shiranish, Bekhme, Mergi and Qamchuqa formations have been investigated in this study from the Shiranish Islam area. A number of papers have been published on this area, but no comprehensive biostratigraphic record has been published that fully documents the Cretaceous stratigraphy and the chronostratigraphic interpretation of the succession. As a result, this has led to significant lithostratigraphic and chronostratigraphic uncertainties. The upper part of the Qamchuqa is pervasively dolomitized. Rare occurrences of foraminifera are found in less dolomitized intervals in thin-section indicating an early - middle Albian age for the top of the formation. A thin interval comprising the Gir Bir Formation is Cenomanian in age and is present between the top of the Qamchuqa Formation and the overlying conglomerate. Historical studies indicate that the Turonian Mergi Formation occurs between the Qamchuqa and Bekhme formations, but our field and analytical data does not support it as a discrete lithostratigraphic entity, as Turonian aged faunas were not recognized. The conglomerate separating the top of the Gir Bir and base of the Bekhme is subdivided into three units (A, B & C). Units A and B are late Cenomanian to early Turonian age, whilst Unit C is of Campanian age. A significant hiatus separates the Gir Bir and the Bekhme, which encompasses the intra Turonian to Santonian. The limestone facies of the lower part of the Bekhme Formation contains rich benthic foraminiferal faunas (miliolids, Pseudedomia, Cuneolina) of early - early middle Campanian age. This lower - lower middle Campanian section at Shiranish Islam is considered to be equivalent of the upper part of the Sa'di Formation in central Iraq and is therefore re-assigned on the basis of chronostratigraphic attribution to the Sa'di (equivalent) herein. The top of the early - early middle Campanian biofacies is abruptly truncated by an omission surface, marked by an erosive base, an influx of clastic material and a major up-section biofacies change characterized by an influx of Pseudosiderolites and Orbitoides representing an intra-Campanian hiatus. The bioevent sequence suggests that this hiatus at Shiranish Islam comprises at least the middle Campanian (upper part of the G. elevata Zone) into the late Campanian (intra R. calcarata Zone), from approximately 80.64 Ma to 76.09 Ma with 4.55 my missing. The middle part of the Bekhme Formation comprising the Pseudosiderolites - Orbitoides facies is thin (c. three meters) and is re-assigned to the Lower Bekhme Member. The boundary between the Lower Bekhme Member and the Upper Bekhme Member is conformable and marked by a gradual up-section reduction in the size and presence of larger benthic foraminifera (Orbitoides, Pseudosiderolites) and an increase in the planktic component (small planktics and calcispheres). This trend of gradually increasing water depth continues into the Shiranish Formation, with no apparent major breaks in deposition. The Campanian - Maastrichtian boundary falls within Unit A of the Shiranish Formation. Deposition of the Shiranish continued into the earliest late Maastrichtian and is unconformably overlain by the Danian Kolosh Formation. The hiatus between the top of the Cretaceous and the Paleocene extends from the early late Maastrichtian (c. 68.86 Ma) to the upper part of the Danian (62.2 Ma) with an estimated duration of 6.66 my.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 230
Author(s):  
Yu Wang ◽  
Yinghui Wang ◽  
Man Wang ◽  
Wang Xu ◽  
Yanan Zhang ◽  
...  

While the earliest record of forensic entomology originated in China, related research did not start in China until the 1990s. In this paper, we review the recent research progress on the species identification, temperature-dependent development, faunal succession, and entomological toxicology of sarcosaprophagous insects as well as common applications of forensic entomology in China. Furthermore, the difficulties and challenges forensic entomologists face in China are analyzed and possible countermeasures are presented.


Quaternary ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
George E. Konidaris ◽  
Dimitris S. Kostopoulos ◽  
Matteo Maron ◽  
Mirjam Schaller ◽  
Todd A. Ehlers ◽  
...  

Background and scope: The late Villafranchian large mammal age (~2.0–1.2 Ma) of the Early Pleistocene is a crucial interval of time for mammal/hominin migrations and faunal turnovers in western Eurasia. However, an accurate chronological framework for the Balkans and adjacent territories is still missing, preventing pan-European biogeographic correlations and schemes. In this article, we report the first detailed chronological scheme for the late Villafranchian of southeastern Europe through a comprehensive and multidisciplinary dating approach (biochronology, magnetostratigraphy, and cosmogenic radionuclides) of the recently discovered Lower Pleistocene vertebrate site Tsiotra Vryssi (TSR) in the Mygdonia Basin, Greece. Results: The minimum burial ages (1.88 ± 0.16 Ma, 2.10 ± 0.18 Ma, and 1.98 ± 0.18 Ma) provided by the method of cosmogenic radionuclides indicate that the normal magnetic polarity identified below the fossiliferous layer correlates to the Olduvai subchron (1.95–1.78 Ma; C2n). Therefore, an age younger than 1.78 Ma is indicated for the fossiliferous layer, which was deposited during reverse polarity chron C1r. These results are in agreement with the biochronological data, which further point to an upper age limit at ~1.5 Ma. Overall, an age between 1.78 and ~1.5 Ma (i.e., within the first part of the late Villafranchian) is proposed for the TSR fauna. Conclusions: Our results not only provide age constraints for the local mammal faunal succession, thus allowing for a better understanding of faunal changes within the same sedimentary basin, but also contribute to improving correlations on a broader scale, leading to more accurate biogeographic, palaeoecological, and taphonomic interpretations.


Author(s):  
Ana Carolina R Ries ◽  
Vinícius Costa-Silva ◽  
Charles F dos Santos ◽  
Betina Blochtein ◽  
Patrícia J Thyssen

Abstract Coleoptera is one of the largest taxon among animals and exhibits diverse eating habits. When associated with decaying corpses, beetles can be of great value in estimating the postmortem interval. In order to consolidate a useful database for the forensic field, it is necessary to study the entomological fauna associated with the carcasses in different geographical regions since the diversity of insects varies according to the biogeoclimate zone. Thus, this study aimed to assess the influence of environmental and ecological factors on the composition and succession of beetles associated with pig carcasses exposed in southern Brazil. Collections were carried out during the hot/dry and cold/wet seasons. A total of 415 specimens belonging to 18 Coleoptera families were sampled. The highest total abundance (n = 329) and diversity (n = 44 taxa) were recorded in the cold/wet season, corresponding to approximately 80% of the total sampled from the two seasons. Dermestidae (26.7%) was the family most abundantly sampled. Regarding eating habits, in an increasing order of importance were necrophagous (43.3%), predator (31.6%), and omnivorous (0.05%). In the hot/dry season, there was no faunal succession. In the cold/wet season, the succession was more associated with differences in abundance than to the presence or absence of a specific taxon by decomposition stage. Considering all the factors analyzed in the current study, three species of beetles, Dermestes maculatus DeGeer (Dermestidae), Euspilotus azureus (Sahlberg, 1823) (Histeridae), and Oxelytrum discicolle Brullé, 1840 (Silphidae), could be identified as being of the greatest forensic relevance in this biogeoclimatic zone.


2020 ◽  
Vol 636 ◽  
pp. 35-46 ◽  
Author(s):  
Y Onishi ◽  
T Yamanaka ◽  
KI Ozaki ◽  
R Nakayama ◽  
S Shimamura ◽  
...  

Faunal succession in whale-fall communities is closely associated with the progress of decomposition of the whale carcass. The main nutritional resources supporting a whale-fall community change from whale matter to chemosynthetic products over time. To study the geochemical aspects of this nutritional succession, we sampled animals over time on and in sediments around carcasses of sperm whale Physeter macrocephalus in Sagami Bay (mobile scavenger to early sulfophilic stage) and off Cape Nomamisaki (sulfophilic stage), Japan (500 and 200-300 m water depths, respectively). In these 2 areas, stable carbon, nitrogen, and sulfur isotopes of the animal soft tissues were measured to precisely elucidate the nutritional resources for each animal. In Sagami Bay, mobile scavengers relied only on whale soft tissue. Infaunal animals at 2 wk after the deployment relied only on whale soft tissue, while infauna at 9 mo after the deployment relied on chemosynthetic products. Such changes in nutritional resources were consistent with the transition of the geochemical environment in the sediments. Off Cape Nomamisaki, vigorous microbial sulfate reduction and thioautotrophic primary production nourished the fauna around the carcasses. The fauna in this area consisted of chemosymbiotic bivalves and necrophagous animals with sulfide-tolerant metabolism. We conclude that the changes in microbial processes, biomass, and compositions in sediments influence faunal succession in whale-fall ecosystems via change in the available nutrition for the fauna.


2020 ◽  
Author(s):  
Thomas Johnson ◽  
◽  
Isla S. Castañeda ◽  
Caitlyn Sarno ◽  
Jeffrey Salacup

Sign in / Sign up

Export Citation Format

Share Document