scholarly journals Inhibition of cell wall synthesis and acylation of the penicillin binding proteins during prolonged exposure of growing Streptococcus pneumoniae to benzylpenicillin

1985 ◽  
Vol 151 (3) ◽  
pp. 475-483 ◽  
Author(s):  
Russell WILLIAMSON ◽  
Alexander TOMASZ

1981 ◽  
Vol 34 (5) ◽  
pp. 590-595 ◽  
Author(s):  
R. B. WRIGHT ◽  
S. D. MAKOVER ◽  
E. TELEP


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Sophie Leclercq ◽  
Adeline Derouaux ◽  
Samir Olatunji ◽  
Claudine Fraipont ◽  
Alexander J. F. Egan ◽  
...  


2007 ◽  
Vol 51 (9) ◽  
pp. 3404-3406 ◽  
Author(s):  
Cheng-Hsun Chiu ◽  
Lin-Hui Su ◽  
Yhu-Chering Huang ◽  
Jui-Chia Lai ◽  
Hsiu-Ling Chen ◽  
...  

ABSTRACT The rate of nonsusceptibility of penicillin-resistant Streptococcus pneumoniae strains to ceftriaxone increased significantly in Taiwan in 2005. Approximately 90% of the ceftriaxone-nonsusceptible isolates were found to be of four major serotypes (serotypes 6B, 14, 19F, and 23F). Seven amino acid alterations in the penicillin-binding protein 2B transpeptidase-encoding region specifically contributed to the resistance.



1999 ◽  
Vol 33 (4) ◽  
pp. 673-678 ◽  
Author(s):  
Regine Hakenbeck ◽  
Thorsten Grebe ◽  
Dorothea Zahner ◽  
Jeffry B. Stock


1999 ◽  
Vol 181 (13) ◽  
pp. 3981-3993 ◽  
Author(s):  
Sylvia A. Denome ◽  
Pamela K. Elf ◽  
Thomas A. Henderson ◽  
David E. Nelson ◽  
Kevin D. Young

ABSTRACT The penicillin binding proteins (PBPs) synthesize and remodel peptidoglycan, the structural component of the bacterial cell wall. Much is known about the biochemistry of these proteins, but little is known about their biological roles. To better understand the contributions these proteins make to the physiology ofEscherichia coli, we constructed 192 mutants from which eight PBP genes were deleted in every possible combination. The genes encoding PBPs 1a, 1b, 4, 5, 6, and 7, AmpC, and AmpH were cloned, and from each gene an internal coding sequence was removed and replaced with a kanamycin resistance cassette flanked by two ressites from plasmid RP4. Deletion of individual genes was accomplished by transferring each interrupted gene onto the chromosome of E. coli via λ phage transduction and selecting for kanamycin-resistant recombinants. Afterwards, the kanamycin resistance cassette was removed from each mutant strain by supplying ParA resolvase in trans, yielding a strain in which a long segment of the original PBP gene was deleted and replaced by an 8-bpres site. These kanamycin-sensitive mutants were used as recipients in further rounds of replacement mutagenesis, resulting in a set of strains lacking from one to seven PBPs. In addition, thedacD gene was deleted from two septuple mutants, creating strains lacking eight genes. The only deletion combinations not produced were those lacking both PBPs 1a and 1b because such a combination is lethal. Surprisingly, all other deletion mutants were viable even though, at the extreme, 8 of the 12 known PBPs had been eliminated. Furthermore, when both PBPs 2 and 3 were inactivated by the β-lactams mecillinam and aztreonam, respectively, several mutants did not lyse but continued to grow as enlarged spheres, so that one mutant synthesized osmotically resistant peptidoglycan when only 2 of 12 PBPs (PBPs 1b and 1c) remained active. These results have important implications for current models of peptidoglycan biosynthesis, for understanding the evolution of the bacterial sacculus, and for interpreting results derived by mutating unknown open reading frames in genome projects. In addition, members of the set of PBP mutants will provide excellent starting points for answering fundamental questions about other aspects of cell wall metabolism.



2020 ◽  
Vol 295 (39) ◽  
pp. 13664-13676 ◽  
Author(s):  
Stephanie Willing ◽  
Emma Dyer ◽  
Olaf Schneewind ◽  
Dominique Missiakas

Staphylococcal peptidoglycan is characterized by pentaglycine cross-bridges that are cross-linked between adjacent wall peptides by penicillin-binding proteins to confer robustness and flexibility. In Staphylococcus aureus, pentaglycine cross-bridges are synthesized by three proteins: FemX adds the first glycine, and the homodimers FemA and FemB sequentially add two Gly-Gly dipeptides. Occasionally, serine residues are also incorporated into the cross-bridges by enzymes that have heretofore not been identified. Here, we show that the FemA/FemB homologues FmhA and FmhC pair with FemA and FemB to incorporate Gly-Ser dipeptides into cross-bridges and to confer resistance to lysostaphin, a secreted bacteriocin that cleaves the pentaglycine cross-bridge. FmhA incorporates serine residues at positions 3 and 5 of the cross-bridge. In contrast, FmhC incorporates a single serine at position 5. Serine incorporation also lowers resistance toward oxacillin, an antibiotic that targets penicillin-binding proteins, in both methicillin-sensitive and methicillin-resistant strains of S. aureus. FmhC is encoded by a gene immediately adjacent to lytN, which specifies a hydrolase that cleaves the bond between the fifth glycine of cross-bridges and the alanine of the adjacent stem peptide. In this manner, LytN facilitates the separation of daughter cells. Cell wall damage induced upon lytN overexpression can be alleviated by overexpression of fmhC. Together, these observations suggest that FmhA and FmhC generate peptidoglycan cross-bridges with unique serine patterns that provide protection from endogenous murein hydrolases governing cell division and from bacteriocins produced by microbial competitors.



2005 ◽  
Vol 49 (4) ◽  
pp. 1591-1592 ◽  
Author(s):  
Krzysztof Trzciński ◽  
Adam MacNeil ◽  
Keith P. Klugman ◽  
Marc Lipsitch

ABSTRACT Penicillin resistance is mainly confined to a limited number of Streptococcus pneumoniae serotypes. Given linkage between the capsular biosynthesis locus and two penicillin binding proteins, we tested whether capsule homology increases transformation rates of penicillin resistance. Transformation rates in homologous donor-recipient pairs were no higher than expected, falsifying this hypothesis.



Sign in / Sign up

Export Citation Format

Share Document