Inhibitory Effect of Annexin V on Protein Kinase C Activity in Mesangial Cell Lysates

1995 ◽  
Vol 232 (3) ◽  
pp. 865-872 ◽  
Author(s):  
Bernard Rothhut ◽  
Thierry Dubois ◽  
Denis Feliers ◽  
Francoise Russo-Marie ◽  
Jean-Paul Oudinet
2008 ◽  
Vol 232 (3) ◽  
pp. 865-872
Author(s):  
Bernard Rothhut ◽  
Thierry Dubois ◽  
Denis Feliers ◽  
Françoise Russo-Marie ◽  
Jean-Paul Oudinet

1989 ◽  
Vol 256 (2) ◽  
pp. G356-G363 ◽  
Author(s):  
T. Chiba ◽  
S. K. Fisher ◽  
B. W. Agranoff ◽  
T. Yamada

In previous studies we demonstrated that parietal cell stimulation with gastrin and carbamoylcholine (carbachol) is accompanied by increased turnover of membrane inositol phospholipids. We conducted the present studies to examine whether membrane-associated protein kinase C activity is enhanced as a consequence of these events and to explore the role of this enzyme in regulating parietal cell function. We observed that carbachol and gastrin dose dependently increased membrane-associated protein kinase C activity while histamine did not. Furthermore, compounds such as phorbol esters and diacylglycerol, which are known to be direct stimulants of protein kinase C activity, also stimulated parietal cell aminopyrine uptake. In contrast, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate and the synthetic diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol inhibited both aminopyrine uptake and membrane inositol phospholipid turnover in parietal cells induced by carbachol and gastrin. The inhibitory effect appeared to result from reduction in the quantity of muscarinic and gastrin receptors without alterations in their specific affinities. These data suggest that protein kinase C mediates stimulation of parietal cells by gastrin and carbachol but also activates an autoregulatory mechanism via downregulation of muscarinic and gastrin receptors.


1999 ◽  
Vol 277 (3) ◽  
pp. G678-G686 ◽  
Author(s):  
Yusuke Tando ◽  
Hana Algül ◽  
Martin Wagner ◽  
Hans Weidenbach ◽  
Guido Adler ◽  
...  

The eukaryotic transcription factor NF-κB/Rel is activated by a large variety of stimuli. We have recently shown that NF-κB/Rel is induced during the course of caerulein pancreatitis. Here, we show that activation of NF-κB/Rel by caerulein, a CCK analog, requires increasing intracellular Ca2+ levels and protein kinase C activation. Caerulein induces a dose-dependent increase of nuclear NF-κB/Rel binding activity in pancreatic lobules, which is paralleled by degradation of IκBα. IκBβ was only slightly affected by caerulein treatment. Consistent with an involvement of Ca2+, the endoplasmic reticulum-resident Ca2+-ATPase inhibitor thapsigargin activated NF-κB/Rel in pancreatic lobules. The intracellular Ca2+ chelator TMB-8 prevented IκBα degradation and subsequent nuclear translocation of NF-κB/Rel induced by caerulein. BAPTA-AM was less effective. Cyclosporin A, a Ca2+/calmodulin-dependent protein phosphatase (PP2B) inhibitor, decreased caerulein-induced NF-κB/Rel activation and IκBα degradation. The inhibitory effect of bisindolylmaleimide suggests that protein kinase C activity is also required for caerulein-induced NF-κB/Rel activation. These data suggest that Ca2+- as well as protein kinase C-dependent mechanisms are required for caerulein-induced NF-κB/Rel activation.


1985 ◽  
Vol 232 (2) ◽  
pp. 609-611 ◽  
Author(s):  
N G Anderson ◽  
P J Hanson

The relative potency with which phorbol esters inhibited histamine-stimulated aminopyrine accumulation (an index of acid secretion) paralleled that which has been established for the activation of purified protein kinase C. The inhibitory effect of 1-oleoyl-2-acetylglycerol on aminopyrine accumulation stimulated by various secretagogues was similar to that of 12-O-tetradecanoylphorbol 13-acetate. Protein kinase C activity was present in a parietal-cell-enriched fraction. In conclusion, protein kinase C could be involved in mechanisms regulating gastric acid secretion.


2018 ◽  
Vol 96 (5) ◽  
pp. 479-484 ◽  
Author(s):  
Cheng-Wei Lu ◽  
Chi-Feng Hung ◽  
Wei-Horng Jean ◽  
Tzu-Yu Lin ◽  
Shu-Kuei Huang ◽  
...  

Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca2+-release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca2+ entry and protein kinase C activity.


1994 ◽  
Vol 267 (5) ◽  
pp. C1224-C1230 ◽  
Author(s):  
A. E. Traynor-Kaplan ◽  
T. Buranawuti ◽  
M. Vajanaphanich ◽  
K. E. Barrett

Carbachol induces calcium-dependent chloride secretion and activates protein kinase C in T84 cells. However, prolonged stimulation with carbachol or direct activation of protein kinase C inhibits subsequent calcium-dependent chloride secretion. Furthermore, the ability of carbachol to elevate inositol tetrakisphosphate levels may be linked to inhibition of chloride secretion. Here we demonstrate that protein kinase C activation increases levels of inositol tetrakisphosphates (1,3,4,6- and 3,4,5,6-isomers) in T84 colonic epithelia. Furthermore, this corresponds to an inhibition of chloride secretion. However, protein kinase C is unlikely to mediate the analogous effects of carbachol. Neither the ability of carbachol to inhibit calcium-dependent chloride secretion nor its effects on inositol 3,4,5,6-tetrakisphosphate levels were reversed by staurosporine. Carbachol also has quantitatively and qualitatively different effects on inositol tetrakisphosphate isomers than protein kinase C activators. Thus protein kinase C activity can increase levels of various inositol tetrakisphosphate isomers within T84 cells but does not mediate carbachol-induced increases in these putative messengers. These data further support the hypothesis that inositol 3,4,5,6-tetrakisphosphate is a negative second messenger, uncoupling epithelial chloride secretion from changes in intracellular calcium.


1998 ◽  
Vol 330 (3) ◽  
pp. 1277-1282 ◽  
Author(s):  
Thierry DUBOIS ◽  
Jean-Paul MIRA ◽  
Denis FELIERS ◽  
Egle SOLITO ◽  
Françoise RUSSO-MARIE ◽  
...  

In this study, we assessed the role of annexin V, a Ca2+-dependent phospholipid-binding protein, as a regulator of protein kinase C (PKC) and characterized its mechanism of inhibition. Several mutants obtained by oligonucleotide site-directed mutagenesis were tested in vitro on PKC activity in cytosolic fractions from Jurkat cells and on purified PKCα. Annexin V inhibited phosphorylation of annexin II by endogenous PKC and phosphorylation of myelin basic protein by PKCα. In both systems, the use of single Ca2+-binding-site mutants of annexin V led to a partial reversal of inhibition, and the Ca2+-binding site located in the first domain of annexin V was found to have the most important role. An increase in the number of mutated Ca2+-binding sites led to a greater loss of inhibition. These results corroborated those showing the progressive loss of binding of these mutants to phospholipid liposomes. In conclusion, we show that PKC inhibition by annexin V is the consequence of a mechanism involving phospholipid sequestration by annexin V, and that the Ca2+-binding site located in domain 1 of annexin V plays a predominant role in this process. In addition, we show that the R122AIK site, which may act analogously to a PKC-inhibitory pseudosubstrate site, is not involved in PKC inhibition, and that a peptide corresponding to the C-terminal tail of annexin V inhibits PKC activity but to a lesser extent than annexin V itself.


Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2472-2481 ◽  
Author(s):  
Fredda S. London

Abstract Prothrombinase activity was tested on thrombin- and SFLLRN-activated platelets treated with RO318220, a potent inhibitor of protein kinase C. RO318220 completely inhibited platelet dense and α-granule secretion at a concentration of 20 μM but had no effect on prothrombinase activity in the presence of excess factor Va (20 nM). This indicates that protein kinase C activity and agonist-initiated secretion are not necessary for the development of a procoagulant surface. Treatment with 75 to 150 μM RO318220 potentiated platelet-supported thrombin generation up to 280% of control platelets with no change in Kd appFXa. Treated with increasing concentrations of RO318220, an increasing proportion of thrombin-stimulated platelets bound annexin V with decreasing binding sites per platelet. A lower mean forward scatter (FSC-H) of platelets treated with RO318220 suggested platelet vesiculation as a result of RO318220 treatment; however, 100 μM calpeptin pretreatment eliminated the decrease in FSC-H without affecting either the increase in platelets positive for annexin V binding, the decrease in binding sites per platelet, or the 3-fold increase in prothrombinase activity. Thus, RO318220 appears to increase prothrombinase activity by increasing platelet responsiveness to thrombin rather than by inducing platelet vesiculation. This suggests that RO318220 inhibits a signaling molecule within a negative regulatory pathway that governs platelet procoagulant surface changes. (Blood. 2003;102:2472-2481)


Sign in / Sign up

Export Citation Format

Share Document