Insight into the activation mechanism of Bordetella pertussis adenylate cyclase by calmodulin using fluorescence spectroscopy

2004 ◽  
Vol 271 (4) ◽  
pp. 821-833 ◽  
Author(s):  
Jacques Gallay ◽  
Michel Vincent ◽  
Inès M. Li de la Sierra ◽  
Hélène Munier-Lehmann ◽  
Madalena Renouard ◽  
...  
2014 ◽  
Vol 82 (12) ◽  
pp. 5256-5269 ◽  
Author(s):  
Joshua C. Eby ◽  
Mary C. Gray ◽  
Erik L. Hewlett

ABSTRACTThe adenylate cyclase toxin (ACT) ofBordetella pertussisintoxicates target cells by generating supraphysiologic levels of intracellular cyclic AMP (cAMP). Since ACT kills macrophages rapidly and potently, we asked whether ACT would also kill neutrophils. In fact, ACT prolongs the neutrophil life span by inhibiting constitutive apoptosis and preventing apoptosis induced by exposure to liveB. pertussis. Imaging ofB. pertussis-exposed neutrophils revealed thatB. pertussislacking ACT induces formation of neutrophil extracellular traps (NETs), whereas wild-typeB. pertussisdoes not, suggesting that ACT suppresses NET formation. Indeed, ACT inhibits formation of NETs by generating cAMP and consequently inhibiting the oxidative burst. Convalescent-phase serum from humans following clinical pertussis blocks the ACT-mediated suppression of NET formation. These studies provide novel insight into the phagocyte impotence caused by ACT, which not only impairs neutrophil function but also inhibits death of neutrophils by apoptosis and NETosis.


1979 ◽  
Vol 254 (13) ◽  
pp. 5602-5605
Author(s):  
E L Hewlett ◽  
L H Underhill ◽  
G H Cook ◽  
C R Manclark ◽  
J Wolff

2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Joshua C. Eby ◽  
Mary C. Gray ◽  
Jason M. Warfel ◽  
Tod J. Merkel ◽  
Erik L. Hewlett

ABSTRACT Adenylate cyclase toxin (ACT) is an essential virulence factor of Bordetella pertussis, and antibodies to ACT protect against B. pertussis infection in mice. The toxin is therefore a strong candidate antigen for addition to future acellular pertussis vaccines. In order to characterize the functionality of the immunologic response to ACT after infection, we developed an assay for testing the ability of serum samples from subjects infected with B. pertussis to neutralize ACT-induced cytotoxicity in J774 macrophage cells. Baboons develop neutralizing anti-ACT antibodies following infection with B. pertussis, and all sera from baboons with positive anti-ACT IgG enzyme-linked immunosorbent assay (ELISA) results neutralized ACT cytotoxicity. The toxin neutralization assay (TNA) was positive in some baboon sera in which ELISA remained negative. Of serum samples obtained from humans diagnosed with pertussis by PCR, anti-ACT IgG ELISA was positive in 72%, and TNA was positive in 83%. All samples positive for anti-ACT IgG ELISA were positive by TNA, and none of the samples from humans without pertussis neutralized toxin activity. These findings indicate that antibodies to ACT generated following infection with B. pertussis consistently neutralize toxin-induced cytotoxicity and that TNA can be used to improve understanding of the immunologic response to ACT after infection or vaccination.


Sign in / Sign up

Export Citation Format

Share Document