Geomorphic characteristics of the Minjiang drainage basin (eastern Tibetan Plateau) and its tectonic implications: New insights from a digital elevation model study

Island Arc ◽  
2006 ◽  
Vol 15 (2) ◽  
pp. 239-250 ◽  
Author(s):  
Hui-Ping Zhang ◽  
Shao-Feng Liu ◽  
Nong Yang ◽  
Yue-Qiao Zhang ◽  
Guo-Wei Zhang
2011 ◽  
Vol 15 (7) ◽  
pp. 2091-2099 ◽  
Author(s):  
P. L. Guth

Abstract. A suite of 42 morphometric parameters for each of 26 272 drainage basins larger than 100 km2 from the Hydrosheds Shuttle Radar Topography digital elevation model shows the global distribution of Strahler order for streams and drainage basins. At the scale of 15 arc s spacing (232 to 464 m) the largest basins are order 9. Many common parameters depend both on the size of the basin, and the scale of the digital elevation model used for the computations. These drainage basins display the typical longitudinal stream profiles, but the major basins tend to be generally more concave than the smaller basins.


1998 ◽  
Vol 9 (4) ◽  
pp. 705 ◽  
Author(s):  
Char-Shine Liu ◽  
Shao-Yung Liu ◽  
Serge E. Lallemand ◽  
Neil Lundberg ◽  
Donald L. Reed

2014 ◽  
Vol 26 (6) ◽  
pp. 614-624 ◽  
Author(s):  
A.J. Cook ◽  
D.G. Vaughan ◽  
A.J. Luckman ◽  
T. Murray

AbstractGlaciers on the Antarctic Peninsula have recently shown changes in extent, velocity and thickness, yet there is little quantification of change in the mass balance of individual glaciers or the processes controlling changes in extent. Here a high-resolution digital elevation model and a semi-automated drainage basin delineation method have been used to define glacier systems between 63°S–70°S on the mainland and surrounding islands, resulting in an inventory of 1590 glacier basins. Of these, 860 are marine-terminating glaciers whose ice fronts can be defined at specific epochs since the 1940s. These ice front positions were digitized up to 2010 and the areas for all individual glacier basins were calculated. Glaciological characteristics, such as geometry, slope and altitudes, were attributed to each glacier, thus providing a new resource for glacier morphological analyses. Our results indicate that 90% of the 860 glaciers have reduced in area since the earliest recorded date. A north–south gradient of increasing ice loss is clear, as is distinct behaviour on the east and west coasts. The area lost varies considerably between glacier types, with correlations apparent with glacier shape, slope and frontal-type. Temporal trends indicate a uniform retreat since the 1970s, with a period of small re-advance in the late 1990s.


2020 ◽  
Vol 206 ◽  
pp. 01027
Author(s):  
Jin Yao ◽  
Yi Chao-lu ◽  
Fu Ping

Topographic data on The Tibetan Plateau (TP) terrain are fundamental for geoscientific research, but are difficult to obtain. The Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) are two commonly used GDEM data. Verifying the accuracy of the two dataset for the TP mountain areas provides a reference point for the application of both DEMs. For evaluating the elevation accuracy and topographic information, we used 8242 field measurements from Differential Global Positioning System (DGPS) points and DEM data generated from 1:100,000 topographic maps to examine the accuracy of ASTER GDEM V2 and SRTM3 V4.1 elevation results. The average RMSE for elevation differences between DGPS and ASTER GDEM across the study areas was 18.56m while the average RMSE between DGPS and SRTM3 was 10.39m. The average RMSEs of ASTER GDEM and SRTM3 in glaciated areas were 8.55m and 5.87m, respectively. The vertical accuracy of SRTM3 is better than that of ASTER GDEM. The vertical accuracy of both DEMs do not vary with altitude, but is related to aspect and slope.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


Sign in / Sign up

Export Citation Format

Share Document