Immunohistochemical analysis of Marinesco bodies, using antibodies against proteins implicated in the ubiquitin-proteasome system, autophagy and aggresome formation

2011 ◽  
Vol 32 (3) ◽  
pp. 261-266 ◽  
Author(s):  
Saori Odagiri ◽  
Kunikazu Tanji ◽  
Fumiaki Mori ◽  
Akiyoshi Kakita ◽  
Hitoshi Takahashi ◽  
...  
2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A438-A438
Author(s):  
Ersin Akarsu ◽  
Can Demirel ◽  
Sibel Oguzkan Balci ◽  
Zeynel A Sayiner ◽  
İbrahim Yilmaz ◽  
...  

Abstract Purpose: The aim of this study is; To examine the destruction of insulin receptor substrate-1 (IRS-1) molecule, which is one of the mechanisms that cause insulin resistance in diabetes and obesity, and its effect to reduce this destruction. For this purpose, the effects of exercise, metformin, exenatide and pioglitazone treatments on IRS-1 ubiquitination in pancreas, muscle and adipose tissue were investigated in an obese and diabetic animal model. Method: Obese rat model was used in this study. This model is characterised by obesity, diabetes and insulin resistance. This study investigated the molecular mechanisms of IRS-1 breakdown in diabetes. IRS1, SOCS1, SOC3 expressions were evaluated in the liver, muscle and adipose tissue of this model. At the same time, immunohistochemical analyses were performed in terms of IRS1, SOCS1 and SOCS3 in the same tissues. Results: Gene expression and Immunohistochemical analysis results were evaluated, the increase in IRS1 was noticeable in rats treated with exenatide, especially in the liver tissue despite the greater decrease in SOCS1 (P> 0.05). It was determined that other drugs in this study and used in the treatment of diabetes may also affect this mechanism to different degrees. Conclusion: Our findings showed that some drugs used in the treatment of diabetes may alter the SOCS effect and / or proteasomal degradation of the IRS-1 protein. This effect was particularly pronounced in liver tissue. However, more comprehensive studies are required to show the contribution of ubiquitination in the destruction of IRS-1 and which drugs are effective on this mechanism. Acknowledgement: This study was supported by the Scientific And Tecnological Research Council Of Turkey (TÜBİTAK) Project No: 217S089


2020 ◽  
Author(s):  
Sirisha Mukkavalli ◽  
Jacob Aaron Klickstein ◽  
Betty Ortiz ◽  
Peter Juo ◽  
Malavika Raman

AbstractThe recognition and disposal of misfolded proteins are essential for the maintenance of cellular homeostasis. Perturbations in the pathways that promote degradation of aberrant proteins contribute to a variety of protein aggregation disorders broadly termed proteinopathies. It is presently unclear how diverse disease-relevant aggregates are recognized and processed for degradation. The p97 AAA-ATPase in combination with a host of adaptor proteins functions to identify ubiquitylated proteins and target them for degradation by the ubiquitin-proteasome system or through autophagy. Mutations in p97 cause multi-system proteinopathies; however, the precise defects underlying these disorders are unclear given the large number of pathways that rely on p97 function. Here, we systematically investigate the role of p97 and its adaptors in the process of formation of aggresomes which are membrane-less structures containing ubiquitylated proteins that arise upon proteasome inhibition. We demonstrate that p97 mediates both aggresome formation and clearance in proteasome-inhibited cells. We identify a novel and specific role for the p97 adaptor UBXN1 in the process of aggresome formation. UBXN1 is recruited to ubiquitin-positive aggresomes and UBXN1 knockout cells are unable to form a single aggresome, and instead display dispersed ubiquitin aggregates. Furthermore, loss of p97-UBXN1 results in the increase in Huntingtin polyQ aggregates both in mammalian cells as well as in a C.elegans model of Huntington’s Disease. Together our work identifies evolutionarily conserved roles for p97 and its adaptor UBXN1 in the disposal of protein aggregates.


2020 ◽  
Author(s):  
Suzanna L. Prosser ◽  
Johnny Tkach ◽  
Ladan Gheiratmand ◽  
Ciaran G. Morrison ◽  
Laurence Pelletier

ABSTRACTProtein degradation at the centrosome, the primary microtubule organizing centre of the cell, is critical to a myriad of cellular processes. Perturbation of the ubiquitin proteasome system causes the formation of an inclusion, or aggresome, at the centrosome. By systematic microscopy analysis, we have placed a subset of centrosomal proteins within the aggresome. Centriolar satellites, proteinaceous granules found in the vicinity of centrosomes, also became incorporated into this structure. Through high-resolution quantitative analysis, we have defined aggresome assembly at the centrosome, demonstrating a requirement for satellites in this process. Furthermore, a module consisting of CP110-CEP97-CEP290 was required to recruit aggresome components early in the pathway and senescent cells were defective in aggresome formation due to limiting amounts of CP110. Finally, satellites and the CP110-CEP97-CEP290 module were required for the aggregation of mutant huntingtin. The accumulation of protein aggregates is central to the pathology of a range of human disorders. These data thereby reveal new roles for CP110, its interactors, and centriolar satellites in controlling cellular proteostasis and the aggregation of disease relevant proteins.


2010 ◽  
Vol 38 (1) ◽  
pp. 144-149 ◽  
Author(s):  
Lih-Shen Chin ◽  
James A. Olzmann ◽  
Lian Li

Understanding how cells handle and dispose of misfolded proteins is of paramount importance because protein misfolding and aggregation underlie the pathogenesis of many neurodegenerative disorders, including PD (Parkinson's disease) and Alzheimer's disease. In addition to the ubiquitin–proteasome system, the aggresome–autophagy pathway has emerged as another crucial cellular defence system against toxic build-up of misfolded proteins. In contrast with basal autophagy that mediates non-selective, bulk clearance of misfolded proteins along with normal cellular proteins and organelles, the aggresome–autophagy pathway is increasingly recognized as a specialized type of induced autophagy that mediates selective clearance of misfolded and aggregated proteins under the conditions of proteotoxic stress. Recent evidence implicates PD-linked E3 ligase parkin as a key regulator of the aggresome–autophagy pathway and indicates a signalling role for Lys63-linked polyubiquitination in the regulation of aggresome formation and autophagy. The present review summarizes the current knowledge of the aggresome–autophagy pathway, its regulation by parkin-mediated Lys63-linked polyubiquitination, and its dysfunction in neurodegenerative diseases.


2013 ◽  
Vol 87 (21) ◽  
pp. 11562-11578 ◽  
Author(s):  
S.-R. Lin ◽  
M. J. Jiang ◽  
H.-H. Wang ◽  
C.-H. Hu ◽  
M.-S. Hsu ◽  
...  

2005 ◽  
Vol 41 ◽  
pp. 173-186 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

The ubiquitin–proteasome system (UPS) is believed to degrade the major contractile skeletal muscle proteins and plays a major role in muscle wasting. Different and multiple events in the ubiquitination, deubiquitination and proteolytic machineries are responsible for the activation of the system and subsequent muscle wasting. However, other proteolytic enzymes act upstream (possibly m-calpain, cathepsin L, and/or caspase 3) and downstream (tripeptidyl-peptidase II and aminopeptidases) of the UPS, for the complete breakdown of the myofibrillar proteins into free amino acids. Recent studies have identified a few critical proteins that seem necessary for muscle wasting {i.e. the MAFbx (muscle atrophy F-box protein, also called atrogin-1) and MuRF-1 [muscle-specific RING (really interesting new gene) finger 1] ubiquitin–protein ligases}. The characterization of their signalling pathways is leading to new pharmacological approaches that can be useful to block or partially prevent muscle wasting in human patients.


2005 ◽  
Vol 41 (1) ◽  
pp. 173 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document