Induction of heat shock proteins 27 and 72 in retinal ganglion cells after acute pressure-induced ischaemia

2009 ◽  
Vol 37 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Bettina K Windisch ◽  
Terry L LeVatte ◽  
Michele L Archibald ◽  
Balwantray C Chauhan
2019 ◽  
Vol 20 (20) ◽  
pp. 5160 ◽  
Author(s):  
Teresa Tsai ◽  
Pia Grotegut ◽  
Sabrina Reinehr ◽  
Stephanie C. Joachim

Glaucoma, one of the most common causes of blindness worldwide, is a multifactorial neurodegenerative disease characterized by damage of retinal ganglion cells and optic nerve degeneration. However, the exact mechanism leading to glaucoma is still not understood. Evidences suggest an immunological involvement in the pathogenesis. Among other immune responses, altered autoantibody patterns were found in glaucoma patients. Especially elevated antibody levels against heat shock proteins (HSPs), like HSP27 or HSP60, were identified. In an animal model, an immunization with these HSPs induced a pressure-independent retinal ganglion cell degeneration and axon loss, hence mimicking glaucoma-like damage. In addition, development of autoreactive antibodies, as well as a glia and T-cell activation, were described in these animals. Recently, we noted that intravitreal HSP27 injection likewise led to a degeneration of retinal ganglion cells and their axons. Therefore, HSP27 might have a direct damaging effect on retinal cells, and might play a key role in glaucoma.


Author(s):  
N. S. Lutsenko ◽  
T. V. Nedilka

Heat shock proteins (HSP) are important components of the defense mechanism that increases the survival of body cells in adverse conditions due to antiapoptotic and cytoprotective effects. Since their discovery, numerous studies and experimental models have proved the role of HSPs as a key link in the processes of both repair and coagulation of proteins, as well as in the protection of cells from oxidative stress. The potential for pharmacological induction of HSPs in the human body makes them an attractive therapeutic target for many neurodegenerative diseases. This review examines the role of HSPs, especially fraction 70, in the mechanisms of neuroprotection of retinal ganglion cells in primary open-angle glaucoma being one of the common neurodegenerative diseases that can lead to complete loss of visual functions. A number of studies have shown the protective effect of HSP70 on retinal ganglion cells in animals with artificially induced glaucoma. But in the course of experiments on animal models, it was also proved that direct immunization with HSP through intravitreal injections induced pressure-independent degeneration of retinal ganglion cells. This indicates the need for indirect stimulation of HSP70 in order to activate their neuroprotective properties. To date, there are insufficient data on the circulation of HSP70 in the body of a person with glaucoma. These data indicate the prospects for further study of the role of HSP70 in glaucoma degeneration and elucidation of the ways of their mediated induction. Keywords: heat shock protein, HSP70, glaucoma, ganglion cells, retina, neuroprotection.


2006 ◽  
Vol 405 (3) ◽  
pp. 191-195 ◽  
Author(s):  
Jacky M.K. Kwong ◽  
Maziar Lalezary ◽  
Jessica K. Nguyen ◽  
Christine Yang ◽  
Anuj Khattar ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jin Wook Jeoung ◽  
Minhong Jeun ◽  
Joo Hyun Park ◽  
Yu Jeong Kim ◽  
Seongtae Bae ◽  
...  

Background. Magnetic hyperthermia using superparamagnetic nanoparticle (SPNP) agents is considered a promising biotechnological approach to induce heat shock proteins (HSPs) in a target tissue because it can generate accurately controllable localized heating.Objectives. The main objective of this study is to demonstrate induction of HSPs in cultured retinal ganglion cells (RGCs) by using engineered Mn0.5Zn0.5Fe2O4SPNP agents coated with polyethylene glycol (PEG) 500.Methods. The Mn0.5Zn0.5Fe2O4nanoparticles were synthesized using a high temperature thermal decomposition method. The AC heating characteristics of PEG 500-coated Mn0.5Zn0.5Fe2O4nanoparticles were investigated using an AC solenoid coil-capacitor system.Results. PEG 500-coated SPNPs efficiently penetrated into the cytoplasm of RGCs without causing obvious cytological changes and showed stable and well-saturated self-heating temperature rise characteristics. Immunofluorescent staining images showed that AC magnetic hyperthermia successfully induced HSP72 in RGCs incubated with Mn0.5Zn0.5Fe2O4nanoparticles. In Western blot analysis, a significant increase in immunoreactivity was observed for RGCs incubated with SPNPs in a fixed AC magnetic field (fappl=140 kHz andHappl=140 Oe).Conclusion. Our results demonstrate that the induction of HSP72 with a magnetic nanofluid hyperthermia could potentially be used as a neuroprotective treatment modality by way of enhancing a natural cytoprotective response.


2001 ◽  
Vol 18 (3) ◽  
pp. 429-436 ◽  
Author(s):  
STEVEN L. BERNSTEIN ◽  
PAUL RUSSELL ◽  
PAUL WONG ◽  
RITA FISHELEVICH ◽  
LOIS E.H. SMITH

The mRNAs for heat shock protein 90 (HSP90) are found at highest levels (differentially expressed) in the primate retinal fovea, the region of highest visual acuity, compared to the peripheral retina. HSP90 expression and retinal associations were analyzed by immuno-localization, in situ hybridization, and western analysis. Retinal ganglion cells (RGCs) express much of the HSP90 mRNA present in the primate retinal fovea. A large fraction of RGC synthesized HSP90 is apparently present in the axonal compartment. To identify the role of HSP90 protein in the optic nerve and retina, co-immunoprecipitation experiments were performed, using antibodies specific for HSP90 isoforms. The immunoprecipitates were analyzed for neurotrophin receptor and ligand activities, and MAP kinase activity. MAP kinase assay was used to determine the activation state of MAP kinase associated with HSP90. HSP90 proteins selectively associate with the inactive form of full-length tyrosine kinase growth factor receptor trkB, suggesting utilization during anterograde axonal transport. Activated MAP kinase, associated with the trk downstream signaling cascade, was found to co-immunoprecipitate with optic nerve HSP90, suggesting that HSP90 may be utilized in retrograde transport of the secondary messengers associated with neurotrophin signaling. HSP90 can thus be hypothesized to play a role in bidirectional RGC axonal protein transport.


Sign in / Sign up

Export Citation Format

Share Document