The Role of Heat Shock Proteins in the Mechanisms of Neurodegeneration and Neuroprotection in Primary Glaucoma: Literature Review

Author(s):  
N. S. Lutsenko ◽  
T. V. Nedilka

Heat shock proteins (HSP) are important components of the defense mechanism that increases the survival of body cells in adverse conditions due to antiapoptotic and cytoprotective effects. Since their discovery, numerous studies and experimental models have proved the role of HSPs as a key link in the processes of both repair and coagulation of proteins, as well as in the protection of cells from oxidative stress. The potential for pharmacological induction of HSPs in the human body makes them an attractive therapeutic target for many neurodegenerative diseases. This review examines the role of HSPs, especially fraction 70, in the mechanisms of neuroprotection of retinal ganglion cells in primary open-angle glaucoma being one of the common neurodegenerative diseases that can lead to complete loss of visual functions. A number of studies have shown the protective effect of HSP70 on retinal ganglion cells in animals with artificially induced glaucoma. But in the course of experiments on animal models, it was also proved that direct immunization with HSP through intravitreal injections induced pressure-independent degeneration of retinal ganglion cells. This indicates the need for indirect stimulation of HSP70 in order to activate their neuroprotective properties. To date, there are insufficient data on the circulation of HSP70 in the body of a person with glaucoma. These data indicate the prospects for further study of the role of HSP70 in glaucoma degeneration and elucidation of the ways of their mediated induction. Keywords: heat shock protein, HSP70, glaucoma, ganglion cells, retina, neuroprotection.

2019 ◽  
Vol 20 (20) ◽  
pp. 5160 ◽  
Author(s):  
Teresa Tsai ◽  
Pia Grotegut ◽  
Sabrina Reinehr ◽  
Stephanie C. Joachim

Glaucoma, one of the most common causes of blindness worldwide, is a multifactorial neurodegenerative disease characterized by damage of retinal ganglion cells and optic nerve degeneration. However, the exact mechanism leading to glaucoma is still not understood. Evidences suggest an immunological involvement in the pathogenesis. Among other immune responses, altered autoantibody patterns were found in glaucoma patients. Especially elevated antibody levels against heat shock proteins (HSPs), like HSP27 or HSP60, were identified. In an animal model, an immunization with these HSPs induced a pressure-independent retinal ganglion cell degeneration and axon loss, hence mimicking glaucoma-like damage. In addition, development of autoreactive antibodies, as well as a glia and T-cell activation, were described in these animals. Recently, we noted that intravitreal HSP27 injection likewise led to a degeneration of retinal ganglion cells and their axons. Therefore, HSP27 might have a direct damaging effect on retinal cells, and might play a key role in glaucoma.


2009 ◽  
Vol 37 (3) ◽  
pp. 299-307 ◽  
Author(s):  
Bettina K Windisch ◽  
Terry L LeVatte ◽  
Michele L Archibald ◽  
Balwantray C Chauhan

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tarique Hussain ◽  
Jing Wang ◽  
Ghulam Murtaza ◽  
Elsayed Metwally ◽  
Huansheng Yang ◽  
...  

Gut microbiota is the natural residents of the intestinal ecosystem which display multiple functions that provide beneficial effects on host physiology. Disturbances in gut microbiota in weaning stress are regulated by the immune system and oxidative stress-related protein pathways. Weaning stress also alters gut microbiota response, limits digestibility, and influences animal productive performance through the production of inflammatory molecules. Heat shock proteins are the molecular chaperones that perform array functions from physiological to pathological point of view and remodeling cellular stress response. As it is involved in the defense mechanism, polyphenols ensure cellular tolerance against enormous stimuli. Polyphenols are nature-blessed compounds that show their existence in plenty of amounts. Due to their wider availability and popularity, they can exert strong immunomodulatory, antioxidative, and anti-inflammatory activities. Their promising health-promoting effects have been demonstrated in different cellular and animal studies. Dietary interventions with polyphenols may alter the gut microbiome response and attenuate the weaning stress related to inflammation. Further, polyphenols elicit health-favored effects through ameliorating inflammatory processes to improve digestibility and thereby exert a protective effect on animal production. Here, in this article, we will expand the role of dietary polyphenol intervention strategies in weaning stress which perturbs gut microbiota function and also paid emphasis to heat shock proteins in gut health. This review article gives new direction to the feed industry to formulate diet containing polyphenols which would have a significant impact on animal health.


Sign in / Sign up

Export Citation Format

Share Document