Alternation of substance P-containing neural pathways in a rat model of irritable bowel syndrome with rectal distension

2006 ◽  
Vol 7 (4) ◽  
pp. 211-218 ◽  
Author(s):  
Wei Feng WANG ◽  
Yun Sheng YANG ◽  
Li Hua PENG ◽  
Gang SUN
2004 ◽  
Vol 13 (2) ◽  
pp. 214 ◽  
Author(s):  
Wei-Feng Wang ◽  
Yun-Sheng Yang ◽  
Gang Sun ◽  
Li-Hua Peng

Author(s):  
Qiuke Hou ◽  
Yongquan Huang ◽  
Zhaoyang Zhu ◽  
Liu Liao ◽  
Xinlin Chen ◽  
...  

Abstract Background Tong-Xie-Yao-Fang (TXYF) has been shown to be effective in diarrhoea-predominant irritable bowel syndrome (IBS-D) patients. However, the underlying mechanism remains to be clarified. The aim of this study was to investigate the efficacy and related mechanisms of TXYF in an IBS-D rat model. Methods The IBS-D rat model was established with 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. Then, IBS-D rats were divided into control, TXYF and rifaximin groups and treated intragastrically with normal saline, TXYF and rifaximin, respectively, for 14 days. The following indicators were measured before and after treatment: defecation frequency, faecal water content (FWC) and colorectal distension (CRD). Histopathological changes in the distal colon were observed after treatment. The expression of OCLN and ZO1 in the distal colon of IBS-D rats reflected the intestinal mucosal permeability, as measured by qRT-PCR, western blot, and enzyme-linked immunosorbent assays (ELISAs). The NF-κB and Notch signalling pathways and inflammation-related factors were investigated. Results After treatment with TXYF, the defecation frequency, FWC and CRD were significantly lower than those in the model group (P < 0.05). HE staining showed that colonic epithelial cells (CECs) in the IBS-D rats displayed significant oedema, impaired intestinal mucosal integrity and an increased influx of inflammatory cells. A significant reduction in granulocyte and CEC oedema was observed after the administration of TXYF and rifaximin compared to that of the model group and blank group (P < 0.05). TXYF significantly upregulated the expression of OCLN and ZO-1 and downregulated inflammation-related factors (IL-6, IL-1β, and TNF-α and the chemokine KC) in IBS-D rats compared to those in the model group rats (P < 0.05). In terms of the NF-κB and Notch signalling pathways, the expression of NICD, p-ERK, Hes-1 and p-P65 decreased significantly in the TXYF and rifaximin groups, while the expression of ATOH1 increased significantly compared to that in the model group (P < 0.05). Conclusion TXYF can effectively improve intestinal permeability and enhance intestinal mucosal barrier function, which may be related to inhibition of the inflammatory cascade and the NF-κB and Notch signalling pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Hu ◽  
Fang Chen ◽  
Haiyong Ye ◽  
Bin Lu

AbstractStress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.


2021 ◽  
Author(s):  
Masamichi Sato ◽  
Takahiro Kudo ◽  
Nobuyasu Arai ◽  
Reiko Kyodo ◽  
Kenji Hosoi ◽  
...  

Abstract Background: The correlation between small intestinal motility alteration and irritable bowel syndrome (IBS) is not well evaluated. Aims: To assess the small intestinal and colonic transits in an IBS rat model with restraint stress and determine the role of small intestinal motility in the IBS pathophysiology.Methods: Restraint stress was utilized to make adolescent IBS rat models that were evaluated for clinical symptoms, including stool frequency and diarrhea. The small intestinal motility and transit rate were also evaluated. The amounts of mRNA encoding corticotropin-releasing hormone, mast cell, and serotonin (5-Hydroxytryptamine; 5-HT) receptor 3a were quantified using real-time polymerase chain reaction (PCR); the 5-HT expression was evaluated using immunostaining.Results: Restraint stress significantly increased the number of fecal pellet outputs, stool water content, and small intestinal motility in the IBS rat models. There was no difference in real-time PCR results, but immunostaining analysis revealed that 5-HT expression in the small intestine was significantly increased in the IBS rat models.Conclusions: In the adolescent rat model of IBS with restraint stress, we observed an increase in small intestinal and colonic motility. In the small intestine, enhanced 5-HT secretion in the distal portion may be involved in increasing the small intestinal motility.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fang Zhang ◽  
Zhe Ma ◽  
Zhijun Weng ◽  
Min Zhao ◽  
Handan Zheng ◽  
...  

Background. Electroacupuncture (EA) has been confirmed effectiveness in the treatment of irritable bowel syndrome (IBS), and P2X3 receptors in the peripheral and central neurons participate in the acupuncture-mediated relief of the visceral pain in IBS. Objective. To reveal the neurobiological mechanism that P2X3 receptor of colonic primary sensory neurons in the dorsal root ganglia of the lumbosacral segment is involved in the alleviation of visceral hypersensitivity by EA in an IBS rat model. Methods. The IBS chronic visceral pain rat model was established according to the method of Al-Chaer et al. EA at the bilateral He-Mu points, including ST25 and ST37, was conducted for intervention. The behavioral studies, histopathology of colon, electrophysiology, immunofluorescence histochemistry, and real-time polymerase chain reaction assays were used to observe the role of P2X3 receptor in the colon and related DRG in relieving visceral hypersensitivity by EA. Results. EA significantly reduced the behavior scores of the IBS rats under different levels (20, 40, 60, 80 mmHg) of colorectal distention stimulation and downregulated the expression levels of P2X3 receptor protein and mRNA in colon and related DRG of the IBS rats. EA also regulated the electrical properties of the membranes, including the resting membrane potential, rheobase, and action potential of colon-associated DRG neurons in the IBS rats. Conclusion. EA can regulate the P2X3 receptor protein and mRNA expression levels in the colon and related DRG of IBS rats with visceral pain and then regulate the excitatory properties of DRG neurons.


2019 ◽  
Vol 37 (4) ◽  
pp. 244-251 ◽  
Author(s):  
Qin Qi ◽  
Huangan Wu ◽  
Xiaoming Jin ◽  
Duiyin Jin ◽  
Yuanyuan Wang ◽  
...  

Background: Moxibustion treatment has been found to ameliorate clinical symptoms including abdominal pain, diarrhoea and constipation in patients with irritable bowel syndrome (IBS). Herein we investigated the mechanisms underlying the use of moxibustion in a rat model of IBS. Methods: In our study, an IBS model was established in rats by colorectal distension (CRD) stimulus and mustard oil enema. The rats were randomly divided into a normal group, model group, mild moxibustion group, electroacupuncture group, probiotic group and dicetel group. Abdominal withdrawal reflex (AWR) scores were determined within 90 min of the last treatment. The expression of GDNF/GFRα3 protein and mRNA in the colon and spinal cord were detected by immunohistochemistry and quantitative real-time-PCR, respectively. Results: The IBS model rats had significantly higher AWR scores than the normal group ( P<0.01). After mild moxibustion treatment, the AWR score was significantly reduced (20 mm Hg, P<0.05; 40 mm Hg, 60 mm Hg and 80 mm Hg, P<0.01). The model group showed significantly more colonic glial cell line-derived neurotrophic factor (GDNF/GFRα3 (GDNF family receptor α3) protein and mRNA expression in the colon and spinal cord than the normal group ( P<0.01). Compared with the model group, the expression of GDNF/GFRα3 protein and mRNA in the colon and spinal cord of the rats were significantly decreased in the mild moxibustion group (colon: GDNF and GFRα3 protein, P<0.01; GDNF and GFRα3 mRNA, P<0.01; spinal cord: GDNF and GFRα3 protein, P<0.01; GDNF mRNA, P<0.05, GFRα3 mRNA, P<0.01). Conclusions: Our data suggest that moxibustion therapy may mitigate CRD-induced increases in the expression of GDNF and its receptor GFRα3 in the colon and spinal cord in a rat model of IBS.


Sign in / Sign up

Export Citation Format

Share Document