scholarly journals Integrative analysis of the gut microbiome and metabolome in a rat model with stress induced irritable bowel syndrome

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Hu ◽  
Fang Chen ◽  
Haiyong Ye ◽  
Bin Lu

AbstractStress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.

Gut ◽  
2019 ◽  
Vol 69 (6) ◽  
pp. 1076-1084 ◽  
Author(s):  
Luisa W Hugerth ◽  
Anna Andreasson ◽  
Nicholas J Talley ◽  
Anna M Forsberg ◽  
Lars Kjellström ◽  
...  

ObjectiveThe ethiopathogenesis of irritable bowel syndrome (IBS) is unknown. While a link to the gut microbiome is postulated, the heterogeneity of the healthy gut makes it difficult to draw definitive conclusions. We aimed to describe the faecal and mucosa-associated microbiome (MAM) and health correlates on a community cohort of healthy and IBS individuals with no colonoscopic findings.DesignThe PopCol study recruited a random sample of 3556 adults; 745 underwent colonoscopy. IBS was defined by Rome IV criteria and organic disease excluded. 16S rRNA gene sequencing was conducted on sigmoid biopsy samples from 376 representative individuals (63 IBS cases) and faecal samples from 185 individuals (32 IBS cases).ResultsWhile sigmoid MAM was dominated by Lachnospiraceae, faeces presented a higher relative abundance of Ruminococcaceae. Microbial richness in MAM was linearly correlated to that in faeces from the same individual (R²=0.255, p<3E-11) as was diversity (R²=0.06, p=0.0022). MAM diversity decreased with increasing body mass index (BMI; Pearson’s r=−0.1, p=0.08) and poorer self-rated health (r=−0.15, p=0.007), but no other health correlates. Faecal microbiome diversity was correlated to stool consistency (r=−0.16, p=0.043). Several taxonomic groups were correlated to age, BMI, depression and self-reported health, including Coprococcus catus associated with lower levels of depression (r=−0.003, p=0.00017). The degree of heterogeneity observed between IBS patients is higher than that observed between healthy individuals.ConclusionsNo distinct microbial signature was observed in IBS. Individuals presenting with low self-rated health or high BMI have lower gut microbiome richness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Annikka Polster ◽  
Lena Öhman ◽  
Julien Tap ◽  
Muriel Derrien ◽  
Boris Le Nevé ◽  
...  

AbstractAlthough incompletely understood, microbiota-host interactions are assumed to be altered in irritable bowel syndrome (IBS). We, therefore, aimed to develop a novel analysis pipeline tailored for the integrative analysis of microbiota-host interactions and association to symptoms and prove its utility in a pilot cohort. A multilayer stepwise integrative analysis pipeline was developed to visualize complex variable associations. Application of the pipeline was demonstrated on a dataset of IBS patients and healthy controls (HC), using the R software package to analyze colonic host mRNA and mucosal microbiota (16S rRNA gene sequencing), as well as gastrointestinal (GI) and psychological symptoms. In total, 42 IBS patients (57% female, mean age 33.6 (range 18–58)) and 20 HC (60% female, mean age 26.8 (range 23–41)) were included. Only in IBS patients, mRNA expression of Toll-like receptor 4 and genes associated with barrier function (PAR2, OCLN, TJP1) intercorrelated closely, suggesting potential functional relationships. This host genes-based “permeability cluster” was associated to mucosa-adjacent Chlamydiae and Lentisphaerae, and furthermore associated to satiety as well as to anxiety, depression and fatigue. In both IBS patients and HC, chromogranins, secretogranins and TLRs clustered together. In IBS patients, this host genes-based “immune-enteroendocrine cluster” was associated to specific members of Firmicutes, and to depression and fatigue, whereas in HC no significant association to microbiota was identified. We have developed a stepwise integrative analysis pipeline that allowed identification of unique host-microbiota intercorrelation patterns and association to symptoms in IBS patients. This analysis pipeline may aid in advancing the understanding of complex variable associations in health and disease.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


2022 ◽  
Vol 25 (8) ◽  
pp. 864-873
Author(s):  
A. Y. Tikunov ◽  
A. N. Shvalov ◽  
V. V. Morozov ◽  
I. V. Babkin ◽  
G. V. Seledtsova ◽  
...  

To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.


2017 ◽  
Vol 35 (3) ◽  
pp. 216-223 ◽  
Author(s):  
Xianwei Zhu ◽  
Zhibin Liu ◽  
Wenmin Niu ◽  
Yuan Wang ◽  
Aimin Zhang ◽  
...  

Background Electroacupuncture (EA) may have a role in the treatment of diarrhoea symptoms. Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter and paracrine signalling molecule in the gastrointestinal (GI) tract, which initiates peristaltic, secretory, vasodilatory, vagal and nociceptive reflexes. In addition, according to the results of our previous report, EA stimulation mediates GI peristalsis by increasing expression of 5-HT and tryptophan hydroxylase (TPH). Aim To investigate the effect of EA at acupuncture points ST25 and BL25 in a rat model of diarrhoea. Methods A diarrhoea-predominant irritable bowel syndrome (IBS-D) model was induced by Folium Sennae in 24 rats, which remained untreated (n=6) or received EA at ST25 (n=6), BL25 (n=6) or the combination of ST25 and BL25 (n=6). A control group of healthy rats was also included (n=6). After treatment, changes in loose stool and small intestine transit rates, enterochromaffin (EC) cell number, expression of TPH, and faecal/colonic 5-HT contents were measured. Results Loose stool and small intestine transit rates, EC cell numbers, colonic TPH expression and faecal/colonic 5-HT content of IBS-D rats were significantly increased relative to controls (p<0.05) and all these parameters were improved by EA at ST25, BL25, or ST25 and BL25 in combination (all p<0.05 vs untreated IBS-D rats). Conclusions EA at ST25 and/or BL25 had a positive effect on objective markers of diarrhoea in a IBS-D rat model and induced changes in EC cell number, colonic TPH and 5-HT contents. The effects of EA stimulation at ST25/BL25 on IBS-D rats may be mediated by excitation of sympathetic nerves.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ayako Horigome ◽  
Ken Hisata ◽  
Toshitaka Odamaki ◽  
Noriyuki Iwabuchi ◽  
Jin-zhong Xiao ◽  
...  

The colonization and persistence of probiotics introduced into the adult human gut appears to be limited. It is uncertain, however, whether probiotics can successfully colonize the intestinal tracts of full-term and premature infants. In this study, we investigated the colonization and the effect of oral supplementation with Bifidobacterium breve M-16V on the gut microbiota of low birth weight (LBW) infants. A total of 22 LBW infants (12 infants in the M-16V group and 10 infants in the control group) were enrolled. B. breve M-16V was administrated to LBW infants in the M-16V group from birth until hospital discharge. Fecal samples were collected from each subject at weeks (3.7–9.3 weeks in the M-16V group and 2.1–6.1 weeks in the control group) after discharge. qPCR analysis showed that the administrated strain was detected in 83.3% of fecal samples in the M-16V group (at log10 8.33 ± 0.99 cell numbers per gram of wet feces), suggesting that this strain colonized most of the infants beyond several weeks post-administration. Fecal microbiota analysis by 16S rRNA gene sequencing showed that the abundance of Actinobacteria was significantly higher (P &lt; 0.01), whereas that of Proteobacteria was significantly lower (P &lt; 0.001) in the M-16V group as compared with the control group. Notably, the levels of the administrated strain and indigenous Bifidobacterium bacteria were both significantly higher in the M-16V group than in the control group. Our findings suggest that oral administration of B. breve M-16V led to engraftment for at least several weeks post-administration and we observed a potential overall improvement in microbiota formation in the LBW infants’ guts.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258489
Author(s):  
Li Ying ◽  
Yunjia Yang ◽  
Jun Zhou ◽  
Hairong Huang ◽  
Guankui Du

Betel nut chewing (BNC) is prevalent in South Asia and Southeast Asia. BNC can affect host health by modulating the gut microbiota. The aim of this study is to evaluate the effect of BNC on the gut microbiota of the host. Feces samples were obtained from 34 BNC individuals from Ledong and Lingshui, Hainan, China. The microbiota was analyzed by 16S rRNA gene sequencing. BNC decreased the microbial α-diversity. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the predominant phyla, accounting for 99.35% of the BNC group. The Firmicutes-to-Bacteroidetes ratio was significantly increased in the BNC group compared to a control group. The abundances of the families Aerococcaceae, Neisseriaceae, Moraxellaceae, Porphyromonadaceae, and Planococcaceae were decreased in the BNC/BNC_Male/BNC_Female groups compared to the control group, whereas the abundances of Coriobacteriaceae, Streptococcaceae, Micrococcaceae, Xanthomonadaceae, Coxiellaceae, Nocardioidaceae, Rhodobacteraceae, and Succinivibrionaceae were increased. In general, the gut microbiome profiles suggest that BNC may have positive effects, such as an increase in the abundance of beneficial microbes and a reduction in the abundance of disease-related microbes. However, BNC may also produce an increase in the abundance of disease-related microbes. Therefore, extraction of prebiotic components could increase the beneficial value of betel nut.


Author(s):  
AA Masyutina ◽  
LN Gumenyuk ◽  
YuV Fatovenko ◽  
LE Sorokina ◽  
SS Bayramova ◽  
...  

The relationship between the gut microbiota and chronic insomnia remains understudied. The aim of this paper was to investigate changes in the taxonomic composition of the gut microbiota and their associations with the levels of cortisol, melatonin and IL6 in patients with chronic insomnia. Our comparative prospective cross-sectional study enrolled 55 patients with chronic insomnia, who formed the main group (female patients: 58.2%, male patients: 41.8%; mean age 31.6 ± 7.4 years), and 50 healthy volunteers, who comprised the control group (females: 68.0%, males: 32.0%; mean age 33.2 ± 6.6 years). The taxonomic composition of the gut microbiota was profiled using 16S rRNA gene sequencing. Plasma cortisol and IL 6 and urine melatonin were measured by means of ELISA. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI). In patients with chronic insomnia, the abundance of Faecalibacterium (p = 0.048), Prevotella 9 (p < 0.001) and Lachnospira (p = 0.036) was lower, whereas the abundance of Blautia (p = 0.012) and Eubacteriumhallii (p = 0.003) was higher than in healthy volunteers. Significant correlations were established between the levels of IL6 and the abundance of Faecalibacterium (r = –0.44; p = 0.001) and Blautia (r = 0.42; p < 0.001), as well as between cortisol concentrations and the abundance of Lachnospira (r = –0.41; p = 0.048). The abundance of Faecalibacterium and Blautiaс was correlated with higher PSQI (r = –0.47, p = 0.001; r = 0.45, p < 0.001, respectively). Our study contributed to the pool of data about changes in the gut microbiota and their associations with some endocrine and inflammation markers in patients with chronic insomnia. These data can be exploited to propose new strategies for the diagnosis and personalized treatment of insomnia aimed at normalizing the patient’s gut microbiota.


2021 ◽  
Author(s):  
Michael Nakai ◽  
Rosilene V Ribeiro ◽  
Bruce R. Stevens ◽  
Paul Gill ◽  
Rikeish R. Muralitharan ◽  
...  

AbstractAimsRecent evidence supports a role for the gut microbiota in hypertension, but whether ambulatory blood pressure (BP) is associated with gut microbiota and their metabolites remains unclear. Here we characterised the function of the gut microbiota, their metabolites and receptors in untreated human hypertensive participants in metropolitan and regional areas of Australia.Methods and ResultsAmbulatory BP, faecal microbiome DNA 16S rRNA gene sequencing, plasma and faecal metabolites called short-chain fatty acid (SCFAs), and expression of their receptors were analysed in 70 untreated and otherwise healthy participants from metropolitan and regional communities. Based on machine-learning multivariate covariance analyses of de-noised amplicon sequence variant (ASV) prevalence data, we determined that there were no significant differences in gut microbiome community α- and β-diversity metrics between normotensives versus essential, white coat or masked hypertensives. However, select taxa were specific to these groups, notably Acidaminococcus spp. in essential hypertensives, and Ruminococcus spp. and Coprobacillus in normotensive subjects. Importantly, normotensive and essential hypertensive cohorts could be differentiated based on gut microbiome gene pathways and metabolites. Specifically, hypertensive participants exhibited higher plasma acetate and butyrate, but their immune cells expressed reduced levels of SCFA-activated G-protein coupled receptor 43 (GPR43).ConclusionsWhile gut microbial diversity did not change in essential hypertension, there was a significant shift in microbial gene pathways, and an increase in the circulating levels of the SCFAs acetate and butyrate. Hypertensive subjects, however, had lower levels of the SCFA-sensing receptor GPR43, putatively blunting their response to BP-lowering metabolites.


Sign in / Sign up

Export Citation Format

Share Document