Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses

2004 ◽  
Vol 20 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Wataru Kakegawa ◽  
Keisuke Tsuzuki ◽  
Yukari Yoshida ◽  
Kimihiko Kameyama ◽  
Seiji Ozawa
2003 ◽  
Vol 358 (1432) ◽  
pp. 707-714 ◽  
Author(s):  
Roberto Malinow

Activity-dependent changes in synaptic function are believed to underlie the formation of memories. A prominent example is long-term potentiation (LTP), whose mechanisms have been the subject of considerable scrutiny over the past few decades. I review studies from our laboratory that support a critical role for AMPA receptor trafficking in LTP and experience-dependent plasticity.


2021 ◽  
Vol 14 (670) ◽  
pp. eabb1953
Author(s):  
Luís F. Ribeiro ◽  
Tatiana Catarino ◽  
Mário Carvalho ◽  
Luísa Cortes ◽  
Sandra D. Santos ◽  
...  

The biological signals of hunger, satiety, and memory are interconnected. The role of the hormone ghrelin in regulating feeding and memory makes ghrelin receptors attractive targets for associated disorders. We investigated the effects of the high ligand-independent activity of the ghrelin receptor GHS-R1a on the physiology of excitatory synapses in the hippocampus. Blocking this activity produced a decrease in the synaptic content of AMPA receptors in hippocampal neurons and a reduction in GluA1 phosphorylation at Ser845. Reducing the ligand-independent activity of GHS-R1a increased the surface diffusion of AMPA receptors and impaired AMPA receptor–dependent synaptic delivery induced by chemical long-term potentiation. Accordingly, we found that blocking this GHS-R1a activity impaired spatial and recognition memory in mice. These observations support a role for the ligand-independent activity of GHS-R1a in regulating AMPA receptor trafficking under basal conditions and in the context of synaptic plasticity that underlies learning.


2008 ◽  
Vol 100 (5) ◽  
pp. 2605-2614 ◽  
Author(s):  
Therése Abrahamsson ◽  
Bengt Gustafsson ◽  
Eric Hanse

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) unsilencing is an often proposed expression mechanism both for developmental long-term potentiation (LTP), involved in circuitry refinement during brain development, and for mature LTP, involved in learning and memory. In the hippocampal CA3–CA1 connection naïve (nonstimulated) synapses are AMPA signaling and AMPA-silent synapses are created from naïve AMPA-signaling (AMPA-labile) synapses by test-pulse synaptic activation (AMPA silencing). To investigate to what extent LTPs at different developmental stages are explained by AMPA unsilencing, the amount of LTP obtained at these different developmental stages was related to the amount of AMPA silencing that preceded the induction of LTP. When examined in the second postnatal week Hebbian induction was found to produce no more stable potentiation than that causing a return to the naïve synaptic strength existing prior to the AMPA silencing. Moreover, in the absence of a preceding AMPA silencing Hebbian induction produced no stable potentiation above the naïve synaptic strength. Thus this early, or developmental, LTP is nothing more than an unsilencing (dedepression) and stabilization of the AMPA signaling that was lost by the prior AMPA silencing. This dedepression and stabilization of AMPA signaling was mimicked by the presence of the protein kinase A activator forskolin. As the relative degree of AMPA silencing decreased with development, LTP manifested itself more and more as a “genuine” potentiation (as opposed to a dedepression) not explained by unsilencing and stabilization of AMPA-labile synapses. This “genuine,” or mature, LTP rose from close to nothing of total LTP prior to postnatal day (P)13, to about 70% of total LTP at P16, and to about 90% of total LTP at P30. Developmental LTP, by stabilization of AMPA-labile synapses, thus seems adapted to select synaptic connections to the growing synaptic network. Mature LTP, by instead strengthening existing stable connections between cells, may then create functionally tightly connected cell assemblies within this network.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Javier Díaz-Alonso ◽  
Wade Morishita ◽  
Salvatore Incontro ◽  
Jeffrey Simms ◽  
Julia Holtzman ◽  
...  

We tested the proposal that the C-terminal domain (CTD) of the AMPAR subunit GluA1 is required for LTP. We found that a knock-in mouse lacking the CTD of GluA1 expresses normal LTP and spatial memory, assayed by the Morris water maze. Our results support a model in which LTP generates synaptic slots, which capture passively diffusing AMPARs.


Sign in / Sign up

Export Citation Format

Share Document