Role of intracellular Ca2+and calmodulin/MAP kinase kinase/extracellular signal-regulated protein kinase signalling pathway in the mitogenic and antimitogenic effect of nitric oxide in glia- and neurone-derived cell lines

2006 ◽  
Vol 23 (7) ◽  
pp. 1690-1700 ◽  
Author(s):  
Antonella Meini ◽  
Julian Blanco Garcia ◽  
Gian Paolo Pessina ◽  
Carlo Aldinucci ◽  
Maria Frosini ◽  
...  
1993 ◽  
Vol 13 (8) ◽  
pp. 4539-4548
Author(s):  
J Wu ◽  
J K Harrison ◽  
P Dent ◽  
K R Lynch ◽  
M J Weber ◽  
...  

Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases activated by dual phosphorylation on threonine and tyrosine residues. A MAP kinase kinase (MKK1 or MEK1) has been identified as a dual-specificity protein kinase that is sufficient to phosphorylate MAP kinases p42mapk and p44mapk on the regulatory threonine and tyrosine residues. Because of the multiplicity of MAP kinase isoforms and the diverse circumstances and agonists leading to their activation, we thought it unlikely that a single MKK could accommodate this complexity. Indeed, two protein bands with MKK activity have previously been identified after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We now report the molecular cloning and characterization of a second rat MAP kinase kinase cDNA, MKK2. MKK2 cDNA contains an open reading frame encoding a protein of 400 amino acids, 7 residues longer than MKK1 (MEK1). The amino acid sequence of MKK2 is 81% identical to that of MKK1, but nucleotide sequence differences occur throughout the aligned MKK2 and MKK1 cDNAs, indicating that MKK2 is the product of a distinct gene. MKK1 and MKK2 mRNAs are expressed differently in rat tissues. Both cDNAs when expressed in COS cells displayed the ability to phosphorylate and activate p42mapk and p44mapk, both MKK1 and MKK2 were activated in vivo in response to serum, and both could be phosphorylated and activated by the v-Raf protein in vitro. However, differences between MKK1 and MKK2 in sites of phosphorylation by proline-directed protein kinases predict differences in feedback regulation.


1993 ◽  
Vol 13 (10) ◽  
pp. 6241-6252 ◽  
Author(s):  
M L Samuels ◽  
M J Weber ◽  
J M Bishop ◽  
M McMahon

We report a strategy for regulating the activity of a cytoplasmic signaling molecule, the protein kinase encoded by raf-1. Retroviruses encoding a gene fusion between an oncogenic form of human p74raf-1 and the hormone-binding domain of the human estrogen receptor (hrafER) were constructed. The fusion protein was nontransforming in the absence of estradiol but could be reversibly activated by the addition or removal of estradiol from the growth media. Activation of hrafER was accompanied in C7 3T3 cells by the rapid, protein synthesis-independent activation of both mitogen-activated protein (MAP) kinase kinase and p42/p44 MAP kinase and by phosphorylation of the resident p74raf-1 protein as demonstrated by decreased electrophoretic mobility. The phosphorylation of p74raf-1 had no effect on the kinase activity of the protein, indicating that mobility shift is an unreliable indicator of p74raf-1 enzymatic activity. Removal of estradiol from the growth media led to a rapid inactivation of the MAP kinase cascade. These results demonstrate that Raf-1 can activate the MAP kinase cascade in vivo, independent of other "upstream" signaling components. Parallel experiments performed with rat1a cells conditionally transformed by hrafER demonstrated activation of MAP kinase kinase in response to estradiol but no subsequent activation of p42/p44 MAP kinases or phosphorylation of p74raf-1. This result suggests that in rat1a cells, p42/p44 MAP kinase activation is not required for Raf-1-mediated oncogenic transformation. Estradiol-dependent activation of p42/p44 MAP kinases and phosphorylation of p74raf-1 was, however, observed in rat1a cells expressing hrafER when the cells were pretreated with okadaic acid. This result suggests that the level of protein phosphatase activity may play a crucial role in the regulation of the MAP kinase cascade. Our results provide the first example of a cytosolic signal transducer being harnessed by fusion to the hormone-binding domain of the estrogen receptor. This conditional system not only will aid the elucidation of the function of Raf-1 but also may be more broadly useful for the construction of conditional forms of other kinases and signaling molecules.


2009 ◽  
Vol 110 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Tzu-Hurng Cheng ◽  
Jin-Jer Chen ◽  
Cheng-Hsien Chen ◽  
Kar-Lok Wong

Background Propofol is one of the most popular intravenous induction agents of general anesthesia. Experimental results revealed that propofol exerted hypotensive and antioxidative effects. However, the intracellular mechanism of propofol remains to be delineated. The aims of this study were to test the hypothesis that propofol may alter strain-induced endothelin-1 (ET-1) secretion and nitric oxide production, and to identify the putative underlying signaling pathways in human umbilical vein endothelial cells. Methods Cultured human umbilical vein endothelial cells were exposed to cyclic strain in the presence of propofol, and ET-1 expression was examined by Northern blotting and enzyme-linked immunosorbent assay kit. Activation of extracellular signal-regulated protein kinase, endothelial nitric oxide synthase, and protein kinase B were assessed by Western blot analysis. Results The authors show that propofol inhibits strain-induced ET-1 expression, strain-increased reactive oxygen species formation, and extracellular signal-regulated protein kinase phosphorylation. On the contrary, nitric oxide production, endothelial nitric oxide synthase activity, and protein kinase B phosphorylation were enhanced by propofol treatment. Furthermore, in the presence of PTIO, a nitric oxide scavenger, and KT5823, a specific inhibitor of cyclic guanosine monophosphate-dependent protein kinase, the inhibitory effect of propofol on strain-induced extracellular signal-regulated protein kinase phosphorylation and ET-1 release was reversed. Conclusions The authors demonstrate for the first time that propofol inhibits strain-induced ET-1 secretion and enhances strain-increased nitric oxide production in human umbilical vein endothelial cells. Thus, this study delivers important new insight into the molecular pathways that may contribute to the proposed hypotensive effects of propofol in the cardiovascular system.


Sign in / Sign up

Export Citation Format

Share Document