scholarly journals Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size

2004 ◽  
Vol 2 (3) ◽  
pp. 181-188 ◽  
Author(s):  
Boulos Chalhoub ◽  
Harry Belcram ◽  
Michel Caboche
Genome ◽  
2001 ◽  
Vol 44 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Meizhong Luo ◽  
Yi-Hong Wang ◽  
David Frisch ◽  
Tarek Joobeur ◽  
Rod A Wing ◽  
...  

Utilizing improved methods, two bacterial artificial chromosome (BAC) libraries were constructed for the multidisease-resistant line of melon MR-1. The HindIII library consists of 177 microtiter plates in a 384-well format, while the EcoRI library consists of 222 microtiter plates. Approximately 95.6% of the HindIII library clones contain nuclear DNA inserts with an average size of 118 kb, providing a coverage of 15.4 genome equivalents. Similarly, 96% of the EcoRI library clones contain nuclear DNA inserts with an average size of 114 kb, providing a coverage of 18.7 genome equivalents. Both libraries were evaluated for contamination with high-copy vector, empty pIndigoBac536 vector, and organellar DNA sequences. High-density filters were screened with two genetic markers FM and AM that co-segregate with Fom-2, a gene conferring resistance to races 0 and 1 of Fusarium wilt. Fourteen and 18 candidate BAC clones were identified for the FM and AM probes, respectively, from the HindIII library, while 34 were identified for the AM probe from filters A, B, and C of the EcoRI library.Key words: bacterial artificial chromosome (BAC) library, Fusarium wilt, melon, pCUGIBAC1, resistant gene.


Genome ◽  
2007 ◽  
Vol 50 (10) ◽  
pp. 954-962 ◽  
Author(s):  
Yueh-Long Chang ◽  
Seungho Cho ◽  
H. Corby Kistler ◽  
Chun-Sheng Hsieh ◽  
Gary J. Muehlbauer

Fusarium graminearum is the primary causal pathogen of Fusarium head blight of wheat and barley. To accelerate genomic analysis of F. graminearum, we developed a bacterial artificial chromosome (BAC)–based physical map and integrated it with the genome sequence and genetic map. One BAC library, developed in the HindIII restriction enzyme site, consists of 4608 clones with an insert size of approximately 107 kb and covers about 13.5 genome equivalents. The other library, developed in the BamHI restriction enzyme site, consists of 3072 clones with an insert size of approximately 95 kb and covers about 8.0 genome equivalents. We fingerprinted 2688 clones from the HindIII library and 1536 clones from the BamHI library and developed a physical map of F. graminearum consisting of 26 contigs covering 39.2 Mb. Comparison of our map with the F. graminearum genome sequence showed that the size of our physical map is equivalent to the 36.1 Mb of the genome sequence. We used 31 sequence-based genetic markers, randomly spaced throughout the genome, to integrate the physical map with the genetic map. We also end-sequenced 17 BamHI BAC clones and identified 4 clones that spanned gaps in the genome sequence. Our new integrated map is highly reliable and useful for a variety of genomics studies.


2018 ◽  
Author(s):  
Kae Koganebuchi ◽  
Takashi Gakuhari ◽  
Hirohiko Takeshima ◽  
Kimitoshi Sato ◽  
Kiyotaka Fujii ◽  
...  

AbstractTo analyze a specific genome region using next-generation sequencing technologies, the enrichment of DNA libraries with targeted capture methods has been standardized. For enrichment of mitochondrial genome, a previous study developed an original targeted capture method that use baits constructed from long-range polymerase chain reaction (PCR) amplicons, common laboratory reagents, and equipment. In this study, a new targeted capture method is presented, that of bacterial artificial chromosome (BAC) double capture (BDC), modifying the previous method, but using BAC libraries as baits for sequencing a relatively large gene. We applied the BDC approach for the 214 kb autosomal region, ring finger protein 213, which is the susceptibility gene of moyamoya disease (MMD). To evaluate the reliability of BDC, cost and data quality were compared with those of a commercial kit. While the ratio of duplicate reads was higher, the cost was less than that of the commercial kit. The data quality was sufficiently the same as that of the kit. Thus, BDC can be an easy, low-cost, and useful method for analyzing individual genome region with substantial length.


Genome ◽  
2000 ◽  
Vol 43 (5) ◽  
pp. 820-826 ◽  
Author(s):  
Andrew G McCubbin ◽  
Carmen Zuniga ◽  
Teh-hui Kao

The Solanaceae family of flowering plants possesses a type of self-incompatibility mechanism that enables the pistil to reject self pollen but accept non-self pollen for fertilization. The pistil function in this system has been shown to be controlled by a polymorphic gene at the S-locus, termed the S-RNase gene. The pollen function is believed to be controlled by another as yet unidentified polymorphic gene at the S-locus, termed the pollen S-gene. As a first step in using a functional genomic approach to identify the pollen S-gene, a genomic BAC (bacterial artificial chromosome) library of the S2S2 genotype of Petunia inflata, a self-incompatible solanaceous species, was constructed using a Ti-plasmid based BAC vector, BIBAC2. The average insert size was 136.4 kb and the entire library represented a 7.5-fold genome coverage. Screening of the library using cDNAs for the S2-RNase gene and 13 pollen-expressed genes that are linked to the S-locus yielded 51 positive clones, with at least one positive clone for each gene. Collectively, at least 2 Mb of the chromosomal region was spanned by these clones. Together, three clones that contained the S2-RNase gene spanned ~263 kb. How this BAC library and the clones identified could be used to identify the pollen S-gene and to study other aspects of self-incompatibility is discussed.Key words: bacterial artificial chromosome, Petunia inflata, pollen-pistil interactions, self-incompatibility, S-locus.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Changqing Liu ◽  
Yuo Guo ◽  
Taofeng Lu ◽  
Hongmei Wu ◽  
Risu Na ◽  
...  

Bacterial artificial chromosome (BAC) libraries have been invaluable tools for the genome-wide genetic dissection of complex organisms. Here, we report the construction and characterization of a high-redundancy BAC library from a very valuable pig breed in China, Wuzhishan miniature pig (Sus scrofa), using its blood cells and fibroblasts, respectively. The library contains approximately 153,600 clones ordered in 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 152.3 kb, representing approximately 7.68 genome equivalents of the porcine haploid genome and a 99.93% statistical probability of obtaining at least one clone containing a unique DNA sequence in the library. 19 pairs of microsatellite marker primers covering porcine chromosomes were used for screening the BAC library, which showed that each of these markers was positive in the library; the positive clone number was 2 to 9, and the average number was 7.89, which was consistent with 7.68-fold coverage of the porcine genome. And there were no significant differences of genomic BAC library from blood cells and fibroblast cells. Therefore, we identified 19 microsatellite markers that could potentially be used as genetic markers. As a result, this BAC library will serve as a valuable resource for gene identification, physical mapping, and comparative genomics and large-scale genome sequencing in the porcine.


Fruits ◽  
2008 ◽  
Vol 63 (6) ◽  
pp. 375-379 ◽  
Author(s):  
Pietro Piffanelli ◽  
Alberto D. Vilarinhos ◽  
Jan Safar ◽  
Xavier Sabau ◽  
Jaroslav Dolezel

Genome ◽  
2007 ◽  
Vol 50 (9) ◽  
pp. 871-875 ◽  
Author(s):  
C.J. Coyne ◽  
M.T. McClendon ◽  
J.G. Walling ◽  
G.M. Timmerman-Vaughan ◽  
S. Murray ◽  
...  

Pea ( Pisum sativum L.) has a genome of about 4 Gb that appears to share conserved synteny with model legumes having genomes of 0.2–0.4 Gb despite extensive intergenic expansion. Pea plant inventory (PI) accession 269818 has been used to introgress genetic diversity into the cultivated germplasm pool. The aim here was to develop pea bacterial artificial chromosome (BAC) libraries that would enable the isolation of genes involved in plant disease resistance or control of economically important traits. The BAC libraries encompassed about 3.2 haploid genome equivalents consisting of partially HindIII-digested DNA fragments with a mean size of 105 kb that were inserted in 1 of 2 vectors. The low-copy oriT-based T-DNA vector (pCLD04541) library contained 55 680 clones. The single-copy oriS-based vector (pIndigoBAC-5) library contained 65 280 clones. Colony hybridization of a universal chloroplast probe indicated that about 1% of clones in the libraries were of chloroplast origin. The presence of about 0.1% empty vectors was inferred by white/blue colony plate counts. The usefulness of the libraries was tested by 2 replicated methods. First, high-density filters were probed with low copy number sequences. Second, BAC plate-pool DNA was used successfully to PCR amplify 7 of 9 published pea resistance gene analogs (RGAs) and several other low copy number pea sequences. Individual BAC clones encoding specific sequences were identified. Therefore, the HindIII BAC libraries of pea, based on germplasm accession PI 269818, will be useful for the isolation of genes underlying disease resistance and other economically important traits.


Sign in / Sign up

Export Citation Format

Share Document