scholarly journals The Experience of Agency

2009 ◽  
Vol 18 (4) ◽  
pp. 242-246 ◽  
Author(s):  
Patrick Haggard ◽  
Manos Tsakiris

The experience of agency refers to the experience of being in control both of one's own actions and, through them, of events in the external world. Recent experimental studies have investigated how people recognise a particular event as being caused by their own action or by that of another person. These studies suggest that people match sensory inputs to a prediction based on the action they are performing. Other studies have contrasted voluntary actions to physically similar but passive body movements. These studies suggest that voluntary action triggers wide-ranging changes in the spatial and temporal experience not only of one's own body but also of external events. Prediction and monitoring of the consequences of one's own motor commands produces characteristic experiences that form our normal, everyday feeling of being in control of our life. We conclude by discussing the implications of recent psychological work for our notions of responsibility for action.

2021 ◽  
Vol 11 (4) ◽  
pp. 471
Author(s):  
Amelia Gangemi ◽  
Margherita Dahò ◽  
Francesco Mancini

One of the several ways in which affect may influence cognition is when people use affect as a source of information about external events. Emotional reasoning, ex-consequentia reasoning, and affect-as-information are terms referring to the mechanism that can lead people to take their emotions as information about the external world, even when the emotion is not generated by the situation to be evaluated. Pre-existing emotions may thus bias evaluative judgments of unrelated events or topics. From this perspective, the more people experience a particular kind of affect, the more they may rely on it as a source of valid information. Indeed, in several studies, it was found that adult patients suffering from psychological disorders tend to use negative affect to estimate the negative event as more severe and more likely and to negatively evaluate preventive performance. The findings on this topic have contributed to the debate that theorizes the use of emotional reasoning as responsible for the maintenance of dysfunctional beliefs and the pathological disorders based on these beliefs. The purpose of this paper is to explore this topic by reviewing and discussing the main studies in this area, leading to a deeper understanding of this phenomenon.


2021 ◽  
Vol 15 (5) ◽  
pp. 356-371
Author(s):  
Cláudio M. F. Leite ◽  
Carlos E. Campos ◽  
Crislaine R. Couto ◽  
Herbert Ugrinowitsch

Interacting with the environment requires a remarkable ability to control, learn, and adapt motor skills to ever-changing conditions. The intriguing complexity involved in the process of controlling, learning, and adapting motor skills has led to the development of many theoretical approaches to explain and investigate motor behavior. This paper will present a theoretical approach built upon the top-down mode of motor control that shows substantial internal coherence and has a large and growing body of empirical evidence: The Internal Models. The Internal Models are representations of the external world within the CNS, which learn to predict this external world, simulate behaviors based on sensory inputs, and transform these predictions into motor actions. We present the Internal Models’ background based on two main structures, Inverse and Forward models, explain how they work, and present some applicability.


1992 ◽  
Vol 15 (4) ◽  
pp. 614-632 ◽  
Author(s):  
S. C. Gandevia ◽  
David Burke

Abstract This target article draws together two groups of experimental studies on the control of human movement through peripheral feedback and centrally generated signals of motor commands. First, during natural movement, feedback from muscle, joint, and cutaneous afferents changes; in human subjects these changes have reflex and kinesthetic consequences. Recent psychophysical and microneurographic evidence suggests that joint and even cutaneous afferents may have a proprioceptive role. Second, the role of centrally generated motor commands in the control of normal movements and movements following acute and chronic deafferentation is reviewed. There is increasing evidence that subjects can perceive their motor commands under various conditions, but that this is inadequate for normal movement; deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of pathology. During natural movement, the CNS appears to have access to functionally useful input from a range of peripheral receptors as well as from internally generated command signals. The unanswered questions that remain suggest a number of avenues for further research.


Author(s):  
Feng Li ◽  
Jack Lindsey ◽  
Elizabeth C. Marin ◽  
Nils Otto ◽  
Marisa Dreher ◽  
...  

AbstractMaking inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory and activity regulation. Here we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.


2021 ◽  
Vol 52 (1) ◽  
pp. 343-362
Author(s):  
William T. Wcislo

The hypothesis that evolved behaviors play a determining role in facilitating and impeding the evolution of other traits has been discussed for more than 100 years with little consensus beyond an agreement that the ideas are theoretically plausible in accord with the Modern Synthesis. Many recent reviews of the genomic, epigenetic, and developmental mechanisms underpinning major behavioral transitions show how facultative expression of novel behaviors can lead to the evolution of obligate behaviors and structures that enhance behavioral function. Phylogenetic and genomic studies indicate that behavioral traits are generally evolutionarily more labile than other traits and that they help shape selective environments on the latter traits. Adaptive decision-making to encounter resources and avoid stress sources requires specific sensory inputs, which behaviorally shape selective environments by determining those features of the external world that are biologically relevant. These recent findings support the hypothesis of a dual role for behavior in evolution and are consistent with current evolutionary theory.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Feng Li ◽  
Jack W Lindsey ◽  
Elizabeth C Marin ◽  
Nils Otto ◽  
Marisa Dreher ◽  
...  

Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory and activity regulation. Here we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.


1975 ◽  
Vol 63 (3) ◽  
pp. 713-733
Author(s):  
M. Burrows

1. Some flight motoneurones receive two superimposed rhythms of depolarizing synaptic potentials when the locust is not flying; a slow rhythm which is invariably linked to the expiratory phase of ventilation, and a fast rhythm with a period of about 50 ms which is similar to the wingbeat period in flight. 2. By recording simultaneously from groups of motoneurones, the synaptic potentials which underly these rhythms have been revealed in 30 flight motoneurones in the three thoracic ganglia. The inputs occur in elevator motoneurones and some depressors but are of lower amplitude in the latter. The inputs have not been found in leg motoneurones. 3. The rhythmic depolarizations are usually subthreshold but sum with sensory inputs to evoke spikes in flight motoneurones at intervals equal to or multiples of the wingbeat period in flight. 4. Both rhythms originate in the metathoracic ganglion and are mediated by the same interneurones. They can be adequately explained by supposing that there are two symmetrical interneurones which each make widespread connexions with left and right flight motoneurones in the three ganglia. 5. The slow rhythm is coded in the overall burst of interneurone spikes during expiration and the fast rhythm in the interval between the spikes of a burst.


2012 ◽  
Vol 108 (8) ◽  
pp. 2083-2091 ◽  
Author(s):  
Xiao Hu ◽  
Wendy M. Murray ◽  
Eric J. Perreault

Although many daily tasks tend to destabilize arm posture, it is still possible to have stable interactions with the environment by regulating the multijoint mechanics of the arm in a task-appropriate manner. For postural tasks, this regulation involves the appropriate control of endpoint stiffness, which represents the stiffness of the arm at the hand. Although experimental studies have been used to evaluate endpoint stiffness control, including the orientation of maximal stiffness, the underlying neural strategies remain unknown. Specifically, the relative importance of feedforward and feedback mechanisms has yet to be determined due to the difficulty separately identifying the contributions of these mechanisms in human experiments. This study used a previously validated three-dimensional musculoskeletal model of the arm to quantify the degree to which the orientation of maximal endpoint stiffness could be changed using only steady-state muscle activations, used to represent feedforward motor commands. Our hypothesis was that the feedforward control of endpoint stiffness orientation would be significantly constrained by the biomechanical properties of the musculoskeletal system. Our results supported this hypothesis, demonstrating substantial biomechanical constraints on the ability to regulate endpoint stiffness throughout the workspace. The ability to regulate stiffness orientation was further constrained by additional task requirements, such as the need to support the arm against gravity or exert forces on the environment. Together, these results bound the degree to which slowly varying feedforward motor commands can be used to regulate the orientation of maximum arm stiffness and provide a context for better understanding conditions in which feedback control may be needed.


1984 ◽  
Vol 2 (2) ◽  
pp. 222-236 ◽  
Author(s):  
John A. Sloboda

Studies of music reading are reviewed with respect to two principal questions: (1) What differences are there between the reading processes of good and poor readers? and (2) To what extent is musical knowledge implicated in reading for performance? The evidence reviewed shows (1) a typical "skill effect" such that better readers have better visual memories for notation and show more sensitivity to structural configurations in the stimuli and (2) that much of what is read is analyzed for musical significance prior to the formulation of motor commands for response. Music reading is in this respect, despite its atypical input modality, a true species of music perception.


Author(s):  
E. M. Sedgwick

When the basal ganglia are damaged by disease processes in man, various disorders of movement occur. In order to control movement the basal ganglia must have a sensory input and in the absence of direct connections to motoneurones or motor cortex they must act through intermediate structures. The experiments, on cats, demonstrate: (1) which sensory inputs reach the caudate nucleus and how they influence activity of the neurones there; (2) the effect of the output from the caudate nucleus and globus pallidus on the neurones of the inferior olive and reticular formation. The results are discussed with respect to the control of movement.


Sign in / Sign up

Export Citation Format

Share Document