Patterns of Functional Brain Organization and Migraine

Cephalalgia ◽  
2004 ◽  
Vol 24 (5) ◽  
pp. 339-346 ◽  
Author(s):  
NA Endicott

The purpose of this study was to examine the relationship between the patterns of functional organization of the brain, as evaluated by the number of anomalous brain conditions or phenomena (ABCP), and the prevalence of migraine in a group of 434 women with lifetime major depressive disorder. ABCP are conditions or phenomena which are clearly related to brain function whose prevalence significantly deviates from the statistical mean for the general population. Eighteen ABCP (e.g. mixed or left handedness, enuresis after age 5, learning and speech disorders) were used in this study as ‘markers’ for their associated patterns of functional brain organization. The relationship between the number of ABCP and the prevalence of migraine was highly significant. The correlation between the number of ABCP and the prevalence of migraine was 0.36 ( P < 0.0001, confidence interval 0.26, 0.43). The prevalence of migraine in patients with no ABCP ( n = 11) was 9%, while that of those with eight or more ABCP ( n = 40) was 85%. This supports the hypothesis that there is a relationship between patterns of functional brain organization and migraine prevalence.

Author(s):  
Theophilus Lazarus ◽  
◽  

Seizures and epilepsy comprise disorders of the brain in which there are abnormal discharges of the brain cells (neurons) resulting in various observable behavioural disorders. Whilst the basic underlying neuropa thology of these disorders is the same in all individuals, the manifestations in cognition, intellect, emotion, socialization and behaviour have variations across individuals.


2019 ◽  
Vol 31 (3) ◽  
pp. 327-338 ◽  
Author(s):  
Pawel J. Matusz ◽  
Suzanne Dikker ◽  
Alexander G. Huth ◽  
Catherine Perrodin

Real-world environments are typically dynamic, complex, and multisensory in nature and require the support of top–down attention and memory mechanisms for us to be able to drive a car, make a shopping list, or pour a cup of coffee. Fundamental principles of perception and functional brain organization have been established by research utilizing well-controlled but simplified paradigms with basic stimuli. The last 30 years ushered a revolution in computational power, brain mapping, and signal processing techniques. Drawing on those theoretical and methodological advances, over the years, research has departed more and more from traditional, rigorous, and well-understood paradigms to directly investigate cognitive functions and their underlying brain mechanisms in real-world environments. These investigations typically address the role of one or, more recently, multiple attributes of real-world environments. Fundamental assumptions about perception, attention, or brain functional organization have been challenged—by studies adapting the traditional paradigms to emulate, for example, the multisensory nature or varying relevance of stimulation or dynamically changing task demands. Here, we present the state of the field within the emerging heterogeneous domain of real-world neuroscience. To be precise, the aim of this Special Focus is to bring together a variety of the emerging “real-world neuroscientific” approaches. These approaches differ in their principal aims, assumptions, or even definitions of “real-world neuroscience” research. Here, we showcase the commonalities and distinctive features of the different “real-world neuroscience” approaches. To do so, four early-career researchers and the speakers of the Cognitive Neuroscience Society 2017 Meeting symposium under the same title answer questions pertaining to the added value of such approaches in bringing us closer to accurate models of functional brain organization and cognitive functions.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140172 ◽  
Author(s):  
Marcus E. Raichle

Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain's energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.


2019 ◽  
Vol 30 (2) ◽  
pp. 824-835 ◽  
Author(s):  
Susanne Weis ◽  
Kaustubh R Patil ◽  
Felix Hoffstaedter ◽  
Alessandra Nostro ◽  
B T Thomas Yeo ◽  
...  

Abstract A large amount of brain imaging research has focused on group studies delineating differences between males and females with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing findings, the present study employed a machine learning approach to assess how accurately participants’ sex can be classified based on spatially specific resting state (RS) brain connectivity, using 2 samples from the Human Connectome Project (n1 = 434, n2 = 310) and 1 fully independent sample from the 1000BRAINS study (n = 941). The classifier, which was trained on 1 sample and tested on the other 2, was able to reliably classify sex, both within sample and across independent samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporoparietal regions, insula, and precuneus. These areas were stable across samples and match well with previously described sex differences in functional brain organization. While our data show a clear link between sex and regionally specific brain connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.


2009 ◽  
Vol 30 (2) ◽  
pp. 449-458 ◽  
Author(s):  
Barış Yeşilyurt ◽  
Kevin Whittingstall ◽  
Kâmil Uğurbil ◽  
Nikos K Logothetis ◽  
Kâmil Uludağ

There is currently a great interest to combine electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to study brain function. Earlier studies have shown different EEG components to correlate well with the fMRI signal arguing for a complex relationship between both measurements. In this study, using separate EEG and fMRI measurements, we show that (1) 0.1 ms visual stimulation evokes detectable hemodynamic and visual-evoked potential (VEP) responses, (2) the negative VEP deflection at ∼80 ms (N2) co-varies with stimulus duration/intensity such as with blood oxygenation level-dependent (BOLD) response; the positive deflection at ∼120 ms (P2) does not, and (3) although the N2 VEP–BOLD relationship is approximately linear, deviation is evident at the limit of zero N2 VEP. The latter finding argues that, although EEG and fMRI measurements can co-vary, they reflect partially independent processes in the brain tissue. Finally, it is shown that the stimulus-induced impulse response function (IRF) at 0.1 ms and the intrinsic IRF during rest have different temporal dynamics, possibly due to predominance of neuromodulation during rest as compared with neurotransmission during stimulation. These results extend earlier findings regarding VEP–BOLD coupling and highlight the component- and context-dependency of the relationship between evoked potentials and hemodynamic responses.


NeuroImage ◽  
2012 ◽  
Vol 59 (3) ◽  
pp. 2923-2931 ◽  
Author(s):  
Jane E. Joseph ◽  
Joshua E. Swearingen ◽  
Christine R. Corbly ◽  
Thomas E. Curry ◽  
Thomas H. Kelly

Sign in / Sign up

Export Citation Format

Share Document