Allelic Association and Recombination Hotspots in the Mucin Gene (MUC) Complex on Chromosome 11p15.5

2007 ◽  
Vol 71 (5) ◽  
pp. 561-569 ◽  
Author(s):  
K. Rousseau ◽  
C. Byrne ◽  
G. Griesinger ◽  
A. Leung ◽  
A. Chung ◽  
...  
1999 ◽  
Vol 29 (6) ◽  
pp. 1449-1454 ◽  
Author(s):  
A. McQUILLIN ◽  
J. LAWRENCE ◽  
D. CURTIS ◽  
G. KALSI ◽  
C. SMYTH ◽  
...  

Background. Linkage and association studies have suggested genetic susceptibility to bipolar affective disorder in a region of chromosome 11 around the tyrosine hydroxylase locus. We attempted to test the hypothesis that there was allelic association between polymorphisms around the tyrosine hydroxylase locus and bipolar affective disorder.Methods. A case–control association study was employed using four polymorphic markers, which span a region of approximately 2 cM across the tyrosine hydroxylase locus.Results. No evidence for allelic association between bipolar affective disorder and any of these markers was found. However, linkage disequilibrium between the markers was detected.Conclusions. This finding diminishes the probability that genes in this region influence susceptibility to bipolar affective disorder, at least in our sample.


1998 ◽  
Vol 332 (3) ◽  
pp. 729-738 ◽  
Author(s):  
Marie-Pierre BUISINE ◽  
Jean-Luc DESSEYN ◽  
Nicole PORCHET ◽  
Pierre DEGAND ◽  
Anne LAINE ◽  
...  

The human mucin gene MUC5AC is mapped clustered with MUC2, MUC5B and MUC6 on chromosome 11p15.5. We report here the isolation and characterization of a genomic cosmid clone, designated ELO9, spanning the 3´-region of MUC5AC and the 5´-region of MUC5B, allowing us to conclude that MUC5AC and MUC5B have the same transcriptional orientation. We determined the genomic organization and the entire sequence of the 3´-region of MUC5AC. The comparative molecular analysis of MUC5AC and MUC5B points to a remarkable similarity in the size and the distribution of exons, and in the type of splice sites, supporting the notion that MUC5AC and MUC5B have evolved from a single common ancestral gene. The derivation of the four genes of the 11p15.5 mucin gene family from a single ancestral gene is discussed.


Author(s):  
Guo-Lian Gan ◽  
Jing Liu ◽  
Wen-Jia Chen ◽  
Qian-Qian Ye ◽  
Ya Xu ◽  
...  

1998 ◽  
Vol 23 (3) ◽  
pp. 281-282
Author(s):  
Hutton ◽  
Guo ◽  
Birchall ◽  
Pearson

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 6-7
Author(s):  
E Fekete ◽  
C B Amat ◽  
T Allain ◽  
M Hollenberg ◽  
K Mihara ◽  
...  

Abstract Background Giardia duodenalis has been shown to alter the structure of the intestinal mucus layers during infection via obscure mechanisms. We hypothesize that goblet cell activity may be disrupted in part due to proteolytic activation of protease-activated receptor 2 (PAR2) by Giardia proteases, resulting in disruption of mucus production and secretion by intestinal goblet cells. Aims Characterize alterations in goblet cell activity during Giardia infection, focusing on the roles of Giardia protease activity and PAR2. Methods Chinese hamster ovary cells transfected with nano-luciferase tagged PAR2 were incubated with Giardia NF or GSM trophozoites. Cleavage within the activation domain results in release of enzymes into the supernatant. Luminescence in the supernatant was measured as an indication of PAR cleavage by Giardia. LS174T, a human colonic mucus-producing cell line, was infected with Giardia trophozoites (isolates NF, WB, S2, and GSM). Prior to infection, trophozoites were treated with E64, a broad-spectrum cysteine protease inhibitor, and LS174T were treated with a PAR2 antagonist, a calcium chelator, or an ERK1/2 inhibitor. Quantitative PCR (qPCR) was performed for the MUC2 mucin gene. Wild-type (WT) and PAR2 knockout (KO) mice were infected with Giardia. Colonic mucus was stained using fluorescein-coupled wheat-germ agglutinin (WGA), and qPCR was performed for Muc2 and Muc5ac. Results Giardia trophozoites cleaved PAR2 within the N-terminal activation domain in a cysteine protease-dependent manner. Cleavage was isolate dependent, with isolates that show higher protease activity cleaving at a higher rate. High protease activity Giardia isolates increased MUC2 gene expression in LS714T. This increase was attenuated by inhibition of Giardia cysteine protease activity, and by antagonism of PAR2, inhibition of calcium release, or inhibition of ERK1/2 activity in LS174T cells. Both Muc2 and Muc5ac expression were upregulated in the colons of WT mice in response to Giardia infection, while in the jejunum Muc2 expression decreased and Muc5ac expression increased. In KO, no changes in gene expression were seen in the colon in response to Giardia infection, while in the jejunum, Muc2 expression was unchanged and Muc5ac expression decreased. Both WT infected and KO noninfected mice showed thinning of the colonic mucus layer compared to WT controls. There was some recovery in thickness in KO infected mice. Conclusions PAR2 plays a significant role in the regulation of mucin gene expression in mice and in a human colonic cell line. Results suggest that Giardia cysteine proteases cleave and activate PAR2, leading to calcium release and activation of the MAPK pathway in goblet cells, ultimately leading to altered mucin gene expression. Findings identify a novel regulatory pathway for mucus production by intestinal goblet cells. Funding Agencies CAG, CCC


Genetics ◽  
1995 ◽  
Vol 141 (1) ◽  
pp. 33-48
Author(s):  
J B Virgin ◽  
J Metzger ◽  
G R Smith

Abstract The ade6-M26 mutation of the fission yeast Schizosaccharomyces pombe creates a meiotic recombination hotspot that elevates ade6 intragenic recombination approximately 10-15-fold. A heptanucleotide sequence including the M26 point mutation is required but not sufficient for hotspot activity. We studied the effects of plasmid and chromosomal context on M26 hotspot activity. The M26 hotspot was inactive on a multicopy plasmid containing M26 embedded within 3.0 or 5.9 kb of ade6 DNA. Random S. pombe genomic fragments totaling approximately 7 Mb did not activate the M26 hotspot on a plasmid. M26 hotspot activity was maintained when 3.0-, 4.4-, and 5.9-kb ade6-M26 DNA fragments, with various amounts of non-S. pombe plasmid DNA, were integrated at the ura4 chromosomal locus, but only in certain configurations relative to the ura4 gene and the cointegrated plasmid DNA. Several integrations created new M26-independent recombination hotspots. In all cases the non-ade6 DNA was located > 1 kb from the M26 site, and in some cases > 2 kb. Because the chromosomal context effect was transmitted over large distances, and did not appear to be mediated by a single discrete DNA sequence element, we infer that the local chromatin structure has a pronounced effect on M26 hotspot activity.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 661-670 ◽  
Author(s):  
Qing-Qing Fan ◽  
Fei Xu ◽  
Michael A White ◽  
Thomas D Petes

In a wild-type strain of Saccharomyces cerevisiae, a hotspot for meiotic recombination is located upstream of the HIS4 gene. An insertion of a 49-bp telomeric sequence into the coding region of HIS4 strongly stimulates meiotic recombination and the local formation of meiosis-specific double-strand DNA breaks (DSBs). When strains are constructed in which both hotspots are heterozygous, hotspot activity is substantially less when the hotspots are on the same chromosome than when they are on opposite chromosomes.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2213-2233 ◽  
Author(s):  
Na Li ◽  
Matthew Stephens

AbstractWe introduce a new statistical model for patterns of linkage disequilibrium (LD) among multiple SNPs in a population sample. The model overcomes limitations of existing approaches to understanding, summarizing, and interpreting LD by (i) relating patterns of LD directly to the underlying recombination process; (ii) considering all loci simultaneously, rather than pairwise; (iii) avoiding the assumption that LD necessarily has a “block-like” structure; and (iv) being computationally tractable for huge genomic regions (up to complete chromosomes). We examine in detail one natural application of the model: estimation of underlying recombination rates from population data. Using simulation, we show that in the case where recombination is assumed constant across the region of interest, recombination rate estimates based on our model are competitive with the very best of current available methods. More importantly, we demonstrate, on real and simulated data, the potential of the model to help identify and quantify fine-scale variation in recombination rate from population data. We also outline how the model could be useful in other contexts, such as in the development of more efficient haplotype-based methods for LD mapping.


Sign in / Sign up

Export Citation Format

Share Document